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Stellar structure
equations



I. Conservation of mass:

‘The matter enclosed 1n a spherical shell of thickness dr has a T

mass dM, = 4xr’pdr. The first stellar structure equation is 2
dM,

dr

= 4xr?p.

II. Hydrostatic equilibrium: net force caused by the gradient

GM,
of pressure: —dPdA. 2 F.=0 = —dPdA ———pdrdA = 0.
.. 4P GM,
The second stellar structure equation 1s — =-—
r r

p.
\L_(P + dP)dA

[If the density were constant (obviously not the case), the first

structure equation yields M, = Mr’/R>, and the second equation, %V
dPldr = GMr’|(r*R%)p => P = GMp [rdr/R> = 3GM*/(8zR")] PdA

Equation of state: inside of the star, the ideal gas equation of

state holds, PV = nRT; but M = un (the mass 1s the mass of one

mol times the number of moles) = P = PR

U

III. Energy transport due to nuclear reactions: consider
two spherical shells like in the figure, inside a star. Let L, be the

total energy flux per unit time that flows outwards across the shell Ly +dL,
of radius r. Then, dL, 1s the energy input to the energy flux made
by the region [r,r + dr]. I € 1s the rate of energy generation per energy
unit mass per unit time (by nuclear reactions), then,

dL T+ dr

dL. = 4nr’dr-p-e = d—r = 4nr’pe (third structure equation).
r



IV-a. Energy transport in radiative zones:

dU dT
rad = 4aT*—. In a radiative
dr dr

zone, the mean free path of radiation is 4 = 1/(kp)

[taking Thomson's electron scattering opacity]

~ 2cm < Ry. That means that radiation behaves

like diffusion, and therefore, we can use the diffusion

approximation: F., 4= — DV, U, 4, with the

diffusion coethicient D = ¢/(3xp). Theretfore,
dac T? dT

3 kp dr

_ 4
Urad =al™ —

Frad, =~ . Using the luminosity

(L, = 4rnr’F ,4,), we get the energy transfer equation
for the radiative regime, which 1s not
valid near the atmosphere (— § Stellar

. . / /
atmospheres: radiation transport): pr

ar 3  kpL
dr  l6rac r2*T3 /T\

P P
Convection inside stars: a blob of
material of density p, pressure P 1s in
hydrostatic equilibrium with its surroundings, of
same density and pressure. The blob 1s transported
adiabatically to another place, where the surrounding
density and pressure are p’, P, respectively. The blob
expands/contracts so it has the same pressure than
the surroundings, changing its density to p*. If
p* < p’, the blob will be buoyant and continue to

move upwards (= convection), but if p* < p’, 1t will
return to the original position.

IV-b. Energy transport in convective zones:
Since the convection process 1s adiabatic,

% — ’ 1y r— d_P
p* =p(P'/P)"". Now, P =P+ -~ Ar
r

17y
1 dP : : :
= p*=p| 1+ ?d—Ar . [Binomial expansion]
r
p dpP .
— p* = p + ——Ar. We can describe the change
yP dr

in the surrounding density field, as well, as

d : : :
p'=p+ d—pAr. Using the 1deal equation of state
r

[p = PI(RT)] p=ptBBp, L AT,
= e get p’ = ——Ar ———Ar
P ’Wdi p=r ey dr T2 dr
— p=p+ L Ar L5 Ar Finally,
P dr T dr

1 dP dT
p¥—p'=[—-1-—— £—+£— Ar, which

y/) Pdr T dr

means that the atmosphere 1s stable 1f
dT 1\ T |dP

— |l <l]l=-—=]—|—

dr y/) P | dr

gradient 1s only slightly steeper than the critical

gradient, the typical stellar energy fluxes are

obtained. The equation for energy transport in

: : dT 1\ TdP
convective zones, 1s, then, — = (1 — — | ——.
dr y/) P dr

. If the temperature




gradient of temperature w.r.t. pressure

10 MQ, Geneva code
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Structure of high-mass vs a low-mass star

There is a parameter called V = In T/In P whic

1.0

h

describes how temperature changes with pressure

(confusing symbol, this is not a vector!). For an

idealized radiative and convective regime, one can
compute the value of this gradient as V 5q and V 44,

respectively ("ad" means adiabatic because

convection is good at trapping heat). The smallest of
the two values determines how energy is transported

1 MQ, Geneva code
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inside the star. In the plots, we have the values of the
nablas computed by the Geneva code for a high-mass
(left) and a low-mass (right) star. One can easily see
that the high-mass star has a convective core

(Vag < Vgg) and radiative envelope (V 5g < Vo).
Exactly the opposite is true in a star like the Sun.



Order-of-magnitude calculations

3M M
Mass-density: p ~ ~ (0.24—
s 4 R3 R3
3M M
Number density: n ~x ———— x~ 0.24
mp4fcR3 mpR3

(protons dominate mass)

Pressure: from the second structure equation,

3GM? GM?
~ ~ 0.12
8TR4 R4

Main-sequence star: made of ideal gas. Its

temperature can be estimated as
P 0.12GM*R™*

— ny

nkg  0.24Mms'R-3k;

, for the Sun, T ~ 10’ K.

Mass-luminosity relation: order of magnitude

version of the mass equation: — ~ R?p (1),
. . P GM
hydrostatic equation: — ~ e 2'0 (2), energy transport
T KoL

equation for radiative zones: — ~ 3) (K 1s the
q —~ 2 (3)1

constant mass-specific absorption coethcient, or
opacity), ideal gas P ~ pT/u (4) (u 1s the mean
molecular mass, [mass]/mol). Let's substitute the
density from (1) everywhere. Then, (3) becomes

T* ~ KLM/R* = L ~ T*R*/(KM). To substitute T:
(4) becomes P ~ MT/(uR>) => T ~ PuR’>/M, but
with (2), T ~ (GM?/R*) uR*/M ~ GuM/R. Then, we

arrive at the mass-luminosity relation,
L ~ G*u*M3/K.

Proportions and stellar lifetime: then, 7 «< M/R
and L o« M>. From black body radiation, we know
that L o« R*T*. Then, comparing luminosities,

M? & M*T? or M « T?. Using this to substitute for
mass in the mass-luminosity relation, L « T°. A star is
powered by nuclear energy, the amount of which 1s
proportional to the mass. The luminosity of the star
1s 1ts power output, so L « M/z. Then, the lifetime of
a star is 7 « M2, which means that more massive
stars live shorter lives.



Evolution of
massive stars



Nuclear reactions HO ?H HO OH
Proton-proton (PP) \)/‘1\‘} J/‘ﬁ‘f\v
chain: (notation: 2 S o
protons Element) the HQ /0 " HO\ ? "
nucleons \/ \
reaction happens in several /1‘# l\
steps: " @ e
IH+IH—2H+e*+,

(requires 7 decay: /\
p+energy > n+et +u,) H@ @+
2)*H+ H — 3He + 7 o
8)3He +3He — jHe +2/H |, | @ @

overall reaction:
41H — JHe + 2e* + 2u, + 2y + kinetic en.

Time that fusion can power a Sun-like star:
Etot

Since luminosity is power, ¢ ~ . In nuclear fusion

©
of hydrogen to helium, E¢yt = NAmc?, where

N = M,/(4my) 13 the number of 4 hydrogen atoms in
the star (4 are needed for the reaction to happen) and
Am ~ 25.71 MeV/c? is the difference in mass between
41H and 7He (it corresponds to the binding energy
released in the nuclear reaction). The percentage of
mass that transforms into energy 1s

e = Am/(4my) =~ 0.7 % (sometimes called efficiency).
So, Etot ~ 0.007Mc? ~ 1.3 - 10% 7

1.3-10%] :
~ I 0% ] " 3.3-10%s ~ 10" yr. This

assumes a fully convective star (all H available for

— 1

burning); in reality it is only about 10% for a Sun-like
star.

Nuclear potential: Two protons at distances much
larger than the nuclear radius repel each other
(Coulomb potential). However, at distances smaller
than a nuclear radius, the potential cannot be the
Coulomb one (repels nuclei), but it must be
attractive: short-range nuclear forces overcome
electrostatic forces. At r = 0, this potential should be
~ —30MeV (from the mass deficiency), and at
around the nuclear radius (r = 1fm), it should
become the Coulomb potential, ~ + 2¢?/r.

Temperature for fusion (quantum
tunnelling): considering for a proton p = h/1, and

Faction — 4> we get
. . 1 ) p2 h2
kinetic energy = —uv- = — = , where
2 2u  2uA?

Y= m]f/ (2m,) = m,/2 1s the reduced mass (two body

problem). This has to be equal to
9) 2
Coulomb barrier ~ i, so we solve for the
h2
2e%u

3 h?
theorem, —kzT =
2 2ul?

wavelength 4 ~ . Then, by the equipartition

— T ~ 107K, which is the




same order of magnitude of the temperature of the
Sun we estimated in § Order of magn. approx.
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CNO cycle: another way to fusion hydrogen to
helium, but, using carbon, nitrogen and oxygen as
catalysts (i.e., the fusion of H with isotopes of N, C
and O [+decays] releases helium at some point). It
requires the previous presence of N, G and O.
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Binding energy: mass-energy difference between
1solated and bound components:

E, = [Zm,+ (A — Z)m, — mpclc?, where Z is the
number of protons, A is the number of nucleons and
mpuc 1s the experimental value of the mass of the
bound nucleus. The values are plotted in the figure
(seeing 1t reflected helps a lot!). For elements to the
left of iron, fusion with a proton 1s energetically
favorable and the processes are exothermic (except
for “He, 12C, 1°0, that are stable). For elements heavier
than iron, energy has to be invested to create
elements even heavier, and nuclear fission
(radioactive decay) releases energy when heavy
elements turn into lighter ones.

l

Fusion

I

o | L N |
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E, /A : Binding energy per nucleon (MeV )
N
|

o

Alpha process/ladder: when H is exhausted from
a star, He starts burning and fusing into heavier
elements (alpha particle = He nucleus). This series of
reactions creates heavier and heavier elements until
Ni and Fe are reached.



Stellar evolution

Main seq., Sun-like to high mass stars

(M z 1.2M): they follow mainly the CNO cycle,
which requires high temperatures (lower mass stars
follow mainly the PP chain). Radiation cannot
transport energy fast enough in the core, so, a
temperature gradient builds up and induces
convection in the core = convective core. Massive
stars have radiative envelopes, but in the most
massive stars, the core 1s so big that they can become
tully convective.

Later phases, low mass stars (M < 8M,,):

Hydrogen shell burning: when the hydrogen 1s
exhausted, the star core composed of helium
surrounded by a shell of hydrogen.
Temperatures and pressures can be high
enough to cause hydrogen fusion in the
hydrogen shell (and higher than in the main
sequence). During this process, some of this
extra energy expands the envelope, so 1t cools
down and the star becomes luminous, large
and cool: a red giant.

Helium core burming: after that, the helium core
begins to collapse until p ~ 107 kg/m°,

T ~ 108K, when helium starts burning
according to

-He + JHe = iBe
®Be + 3He — ;°C
alpha + (2 alpha — Be) - C)

(triple alpha process:

Be-8 decays quickly, so it has to react quickly
with another alpha particle to produce C-12.
Then, C-12 can also fuse with another alpha
particle to produce O-16.

Helwum shell burming and planetary nebulae: After
that, the star burns hydrogen in an outer
shell, burns He 1n an inner shell, and
contains a G/O core. During this phase, the
high energy inside not only expands, but
expels parts of the atmosphere (stellar winds)
at rates of M ~ 107*M/yr => most of the
mass 1s lost after 10 000 yr, and forms a
planetary nebula that expands at rates of

~ [10,30] km/s.

Time scales for a solar-mass star: H-core burning
(main sequence): ~ 10'°yr. H-shell burning
(red giant): ~ 10° yr. He-core burning
(horizontal branch): ~ 108 yr. He-shell
burning (asymptotic giant branch): ~ 107 yr.
Planetary nebula formation: ~ 10*yr. End
result: white dwarf.



Later phases, massive stars (M 2 8M): all ... until

revious phases minus planetary nebulae. Instead, a
p p™ p ALY e . §§Cr+§He#§%Fe+y
set of reactions called collectively silicon burning
takes place. %Fe + ;‘He = §§Ni T
+ alpha — Ni)

(Cr + alpha — Fe; Fe

Carbon-alpha-oxygen burning (T 2 108K):

2~ 4 16 where the process becomes endothermic.
¢ C+5He - PO +y

(C + alpha - O; O Photons possess enough energy to destroy
:°0 + JHe — 90Ne + 7 heavy nuclei; this 1s photodisintegration (e.g;,
+ alpha — Ne Fe + y - 13 alpha + 4 n, or alpha - 2 p + 2
p P p p
n).

Carbon-carbon burning (T 2 6 - 108K):
Timescales for a 25M, star: H-core burning:

(16 4 23
3 O +25He, Mg +n 5 - 10°yr; He-core burning: 5 - 10° yr; C-core
C+4°C— S BWNe+24He, Mg +y burning: 500 yr; Si-burning: 1 day. After
2Na + p that: (type II) supernova explosion, compact

object.
Oxygen-oxygen burning (T 2 10°K):

Mg + 2 5He, S +n
é60 + é60 — 3 %ﬁSi +2 gHe, ?%S +y
31
15P+p

Silicon-alpha-burning (T 2 3 - 10°K)

28Gi + 4He = 32S + ¢
1:2 i ;2 (S1 + alpha - S; S+
1S +5He = [gAr+y

alpha — Ar, etc.)
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HR diagram of a massive star

This plot is the HR diagram of a 10 solar mass star computed with
the Geneva stellar evolution code (Genec). The main sequence
evolution lasts longer than the other phases, which is not evident
from this plot. The stellar radius can be easily computed with the

Stefan-Boltzmann law as R, = /L, /(470g4ef-Boltz) Téurf
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Kippenhahn diagram of a massive star

This diagram summarizes the structure and evolution of a massive star of 10
solar masses (as computed with Genec). As seen previously, the main
seqguence has a convective core and a radiative envelope. The structure
changes when hydrogen burning moves from the core to the shell and helium
core burning starts. At the end of the life of a star, mass loss due to winds
becomes significant.



Supernovae



Timescale for core collapse: from the

hydrostatic equilibrium analysis, we get for the non-
R d*r GM
equilibrium case, dM — = — dP — ——dM, where
dr? r?
the acceleration 1s only radial. If we turn the pressure

off suddenly, we get a free fall collapse. Then,

d*r GM ,
— = — ——. Now, we can approximate crudely,
dr? r2

GM

~ For a stellar core with M =~ M, and

72

ft
R ~ 6 -10°m (core ~ size of the Earth), tr ~ 1s.
Energy released: during the collapse of the core,
the gravitational energy released 1s approx. the
difference between the initial and final states of the
star: Upofore = — GM3/(6 - 10°m) ~ —4-10%J, and
U, fier = — GMg/(10*m) ~ — 4 - 107 ]

=> AU ~ 10*J, most of which is carried out by the
neutrinos of the inverse beta decay during
neutronization. The kinetic energy released is of the
order of 10*J, and the energy carried out by

photons, of the order of 10**J. The peak brightness
of a supernova is of around 10° L.

Elements beyond iron: in a neutron-rich
environment, an atomic nucleus can capture a
neutron; this neutron then undergoes beta decay (the
captured neutron becomes a proton and releases an

electron + neutrino), leaving the nucleus with 1
proton more than before. There are two processes
that involve these reactions: if neutrons are captured
more rapidly than beta decay can eliminate them,
heavy neutron-rich elements build up rapidly (r-

process); on the contrary, heavy elements build up

slowly (s-process).

Supernova classification: based on spectral lines,
not physical mechanisms. Basic: type I (with
hydrogen) and type II (no hydrogen). Type la
supernovas are caused by the detonation of a white
dwarf by accretion (from a donor star). The rest (type
Ib, Ic, II) are core-collapse supernovas.

Type la: the core mass of a white dwarf exceeds the
Chandrasekhar limit because of accretion from a
donor star. All type I supernovae share a similar rate
of decline of their brightness after their peak. This
can be explained by the half-life of f decay from
>8Co to 35Fe (r = 77.7d). The total number of atoms
present with time 1s N(f) = Noe_ln(z)” . From the
energy given to the supernova by the reaction, it can
be estimated that the magnitude (or change or the
logarithm of luminosity with time) decays at a rate of
~ 0.01 mag/d, the rate that is observed after 50 days
in a type Ia supernova. This 1s why they are used as
standard candles.



Type 11: 1solated stars. Highly dependent on the mass of
the star (mass-energy available) and metallicity (how
eftective 1s radiation pressure: more metals means
more opaque media where radiation pressure
produces more force). Photodesintegration of nuclei
by radiation and neutronization reduce radiation
support at the core of the star, rapid triggering
gravitational core collapse (see estimation of
timescale above = speeds of up to 70 000 km/s for
the outer core). The outer core collapses
supersonically, but the inner core collapses
subsonically. When nuclear densities ( ~ 10'* g/cm?)
are reached at the inner core, the nuclear force
(residual strong interaction) repels the infalling
material, halting the collapse.

Type II: rebound: Then, the outer material rebounds
and a pressure shock wave propagates outwards. The
material ejection process is not fully understood, but
it could involve neutrinos being trapped by the fast
increase of density in the inner core. Neutrinos
diffuse outwards through the outer core and their
interactions (neutrino transport) may push the
material outwards until they reach the
"neutrinosphere" (low density threshold), beyond
which they can escape without further interaction. At
the boundary of the outer core, there 1s still a Si
burning shell.

Pair-creation instability: in very massive cores,
gamma rays can create electron-positron
pairs instead of being used for radiation
pressure. This lowers radiation pressure and
triggers collapse. Then, oxygen is ignited
explosively and mass is lost from the core,
even leaving no remnant behind. For this
massive cores, it 1s assumed the mass lost by
stellar winds during the main sequence 1s
small, which means low metallicity (=>low
opacity =>low radiation pressure that drives
the wind).

Fate of the most massive stars: in the
diagram of the supernova types, for the most
massive stars in the less-than-solar metallicity
regime, the direct formation of a black hole
means that no supernova shock is launched,
and so, there 1s only very faint or no
supernova explosion observed.
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Supernova types and remnants

Not all supernovae are the same. These plots show the supernova types for
isolated stars. As it can be seen from the plot, the kind of supernova and the kind
of remnant produced depend strongly on metallicity. For low metallicity, direct

collapse onto blackholes becomes more common compared to solar-like
metallicity.

Heger et al. (2003) ApJ 591 288.
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Remnants for rotating stars

The classical description of supernovae and remnants
does not include rotation. In this paper, the plot from the
previous page has been updated to include rotation.
Rotating models show that at high metallicities it's more
difficult to have pair-instability supernovae.

Hirschi et al 202§ MINRAS 543 2796
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Stellar remnants



Introduction to general relativity

Space-time is described by the variables x° = ct,
xb, x%, X3 (e.g., = x,y,z1n Gartesian coordinates). In
Euclidian space, we can define the distance between
two points by using the Pythagorean theorem:

a’séuCl = dx* + dy” + dz*. In special relativity, however,
we know that this distance 1s not measured the same
by an observer moving with respect to us, due to
Lorentz contraction. The closest we can define to an
invariant "distance" is called spacetime interval:

ds* = — c?dt* + dx* + dy* + dz” (this can be shown to
be invariant for any observer by using the Lorentz
transformations, differentiating and substituting).
The meaning of the spacetime interval can be seen
by placing ourselves in a frame of reference of a
moving particle. In that frame of reference, the
particle appears to be static (dx = dy = dz = 0), and
the measured time is the proper time dz, so that

ds? = — c?d7?. Since ds? is an invariant, we can
always write that relation 1n any frame.

In general relativity, the spacetime interval also shows
the curvature of the spacetime, which 1s caused by
the presence of matter and energy. In order to start
the derivation, we are interested in knowing the
spacetime interval (sometimes called "the metric")
outside of a simple spherical object of mass M. The
full solution is called the Schwarzschild solution. As a

first order approximation (enough for this derivation),
a comparison with Newtonian gravity yields

2D
ds® ~ — (1 + —2) c2dt® + dx* + dy* + dz?
c

(this comparison can be done by studying the motion
of a particle under a weak potential in classical
mechanics, with a Lagrangian, and relativity, by
saying that the trajectory of a particle has to
minimize the proper time [variational calculus]). For

a spherical object of mass M the potential 1s
O =-—-GMI/r.

The exact metric for the exterior spacetime that
describes a spherically-symmetric object in spherical-
like coordinates 1s

2GM 26M\ !
ds? = — (1_ )czdt2+ (1— . ) dr? + r’(d6? + sin? 8d¢?)

c2r c2r

and it 1s called the Schwarzschild metric. This metric 1s
used for example for understanding black holes,
regions of spacetime so distorted that light cannot
escape from there.



Neutron stars: introduction to the equation
of state:

After the supernova explosion, the stellar core
collapses under gravity and squeezes together.
Under those extreme circumstances, muverse beta
decay starts to be more and more energetically
favorable to the heavy nucleons in the stellar core,
according to the equation

mass-energy +p +e¢ — n+v.

Normally, the inverse equation happens (beta
decay), meaning, neutrons on their own decay into
protons, electrons, and neutrinos. Under the

© proton
¢ electron

@, heavy

o neutron
w nuclei A

down quark

up quark down antiquark

Yo meson(eg. 7)) @@ hyperon (e.g. A°)

inverse beta decay, matter becomes neutronized and
this process 1s called neutron drip. A neutron star 1s
not composed entirely of neutrons, but instead
several degrees of neutronization happen in
different layers of the neutron stars (there 1s an
electron atmosphere, a crust, a core). We don't fully
know what the core is made from: this is the
problem of the equation of state.

- & . photon trajectories

-

pr————

' otspot

neutron star

strange quark



Neutron stars: approximation of the
degenerate gas: an order-of-magnitude argument
to derive the degeneracy pressure that happens inside
of a neutron star is as follows. From quantum
mechanics, we know: phase-space cells are discretized
(ApAx ~ h), and two 1dentical fermions cannot have
the same quantum state simultaneously. There 1s a
minimum energy that a group of N fermions can
have so they don't have the same quantum state
simultaneously. That minimum (kinetic) energy
(Fermi energy) determines a Fermi momentum,
which originates the pressure. Then, the pressure
should depend on the number of fermions, and the
phase-space cell size. We can include the spatial size
in a volume, and say that P should depend on #n, the
number density. The phase-space size 1s also
dependent on mass (more mass, more momentum),
and A comes into play because of quantization of the
phase space. The pressure should not depend on
temperature, since the pressure must be felt in the
minimum energy state (“T = 0”). Then, P ~ #®mPn?,
where the exponents are determined by dimensional
analysis, yielding P ~ #*m~!n>", in agreement with
the correct calculation (except for a dimensionless
constant of order unity). For a relativistic degenerate
gas, we replace the dependency m — ¢ and

recalculate exponents so we get P ~ ficn*?.

Mass and radius: if we solve the relativistic
equivalent to the structure equations (TOV
equations) for a neutron star, we find out that
depending on what we assume the neutron star is
composed of, we get different radii for a given
neutron star mass. Strangely, more massive neutron
stars tend to be smaller; not larger (they become more
compact). If we can measure the mass and radius of
neutrons stars very accurately, we could find out what
they are made of, from the predictions of the radius
by equations of state,

Pulsars: when matter falls down onto the surface of
a neutron star, its gravitational energy 1s released as
radiation. Because of the strong magnetic fields of
neutron stars, matter is accreted near magnetic poles
on the surface magnetic field. Those sites become
hotspots. As the neutron star rotates and the light from
a hotspot faces us on Earth, we see a maximum of
radiation, and when a hotspot 1s on the hidden side
of the neutron star, we see a minimum. This 1s a
pulsar. Pulsars can rotate at incredibly fast speeds,
reching up to 716 Hz for the fastest spining pulsar
known to date. Because spacetime 1s curved, and
light curves with 1t, we actually can see light from
behind the neutron star in front. The pulses of a
pulsar can be used to measure the radu of neutron
stars.
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The left plot shows several calculations of the equation of state of a neutron star
assuming different compositions. The right plot shows what the predicted
masses and radii yield for different compositions. Except for the few gray
curves, more massive a neutron star is, the smaller the radius.
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These plots show the pulses of a pulsar assuming different
models for the spacetime (different line colors). The left and

right panel show different shapes and locations of the

hotspots in the neutron star.
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