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Stellar structure 
equations



I. Conservation of  mass: 

The matter enclosed in a spherical shell of  thickness  has a 
mass . The first stellar structure equation is 

. 

II. Hydrostatic equilibrium: net force caused by the gradient 
of  pressure: . . 

The second stellar structure equation is . 

[If  the density were constant (obviously not the case), the first 
structure equation yields , and the second equation, 

 ] 

Equation of  state: inside of  the star, the ideal gas equation of  
state holds, ; but  (the mass is the mass of  one 
mol times the number of  moles)  

III. Energy transport due to nuclear reactions: consider 
two spherical shells like in the figure, inside a star. Let  be the 
total energy flux per unit time that flows outwards across the shell 
of  radius . Then,  is the energy input to the energy flux made 
by the region . If   is the rate of  energy generation per 
unit mass per unit time (by nuclear reactions), then, 

  (third structure equation).
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IV-a. Energy transport in radiative zones: 

. In a radiative 
zone, the mean free path of  radiation is  
[taking Thomson's electron scattering opacity] 

. That means that radiation behaves 
like diffusion, and therefore, we can use the diffusion 
approximation: , with the 
diffusion coefficient . Therefore, 

. Using the luminosity 

( ), we get the energy transfer equation 
for the radiative regime, which is not 
valid near the atmosphere (  § Stellar 
atmospheres: radiation transport): 

. 

Convection inside stars: a blob of  
material of  density , pressure  is in 
hydrostatic equilibrium with its surroundings, of  
same density and pressure. The blob is transported 
adiabatically to another place, where the surrounding 
density and pressure are , respectively. The blob 
expands/contracts so it has the same pressure than 
the surroundings, changing its density to . If  

, the blob will be buoyant and continue to 

move upwards (  convection), but if  , it will 
return to the original position. 

IV-b. Energy transport in convective zones: 
Since the convection process is adiabatic, 

. Now,  

. [Binomial expansion] 

. We can describe the change 

in the surrounding density field, as well, as 
. Using the ideal equation of  state 

[ ], we get   

. Finally, 

, which 

means that the atmosphere is stable if  

. If  the temperature 

gradient is only slightly steeper than the critical 
gradient, the typical stellar energy fluxes are 
obtained. The equation for energy transport in 

convective zones, is, then, .
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There is a parameter called  which 
describes how temperature changes with pressure 
(confusing symbol, this is not a vector!). For an 
idealized radiative and convective regime, one can 
compute the value of this gradient as  and , 
respectively ("ad" means adiabatic because 
convection is good at trapping heat). The smallest of 
the two values determines how energy is transported 

inside the star. In the plots, we have the values of the 
nablas computed by the Geneva code for a high-mass 
(left) and a low-mass (right) star. One can easily see 
that the high-mass star has a convective core 
( ) and radiative envelope ( ). 
Exactly the opposite is true in a star like the Sun. 

∇ ≡ ln T/ ln P

∇rad ∇ad ∇ad < ∇rad ∇rad < ∇ad
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Order-of-magnitude calculations

Mass-density:  

Number density:  

(protons dominate mass) 

Pressure: from the second structure equation, 

 

Main-sequence star: made of  ideal gas. Its 
temperature can be estimated as 

, for the Sun, . 

Mass-luminosity relation: order of  magnitude 
version of  the mass equation:  (1), 

hydrostatic equation:  (2), energy transport 

equation for radiative zones:  (3) (  is the 
constant mass-specific absorption coefficient, or 
opacity), ideal gas  (4) (  is the mean 
molecular mass, [mass]/mol). Let's substitute the 
density from (1) everywhere. Then, (3) becomes 

. To substitute : 
(4) becomes  , but 
with (2), . Then, we 

arrive at the mass-luminosity relation, 
.  

Proportions and stellar lifetime: then,  
and . From black body radiation, we know 
that . Then, comparing luminosities, 

 or . Using this to substitute for 
mass in the mass-luminosity relation, . A star is 
powered by nuclear energy, the amount of  which is 
proportional to the mass. The luminosity of  the star 
is its power output, so . Then, the lifetime of  
a star is , which means that more massive 
stars live shorter lives.
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Evolution of 
massive stars



Proton-proton (PP) 
chain: (notation: 

) the 
reaction happens in several 
steps:  
1)   
(requires  decay: 

) 
2)  
3)  
overall reaction: 

 

Time that fusion can power a Sun-like star: 
Since luminosity is power, . In nuclear fusion 

of  hydrogen to helium, , where 
 is the number of  4 hydrogen atoms in 

the star (4 are needed for the reaction to happen) and 
 is the difference in mass between 

 and  (it corresponds to the binding energy 
released in the nuclear reaction). The percentage of  
mass that transforms into energy is 

(sometimes called efficiency). 
So,  

. This 
assumes a fully convective star (all H available for 

burning); in reality it is only about 10% for a Sun-like 
star. 

Nuclear potential: Two protons at distances much 
larger than the nuclear radius repel each other 
(Coulomb potential). However, at distances smaller 
than a nuclear radius, the potential cannot be the 
Coulomb one (repels nuclei), but it must be 
attractive: short-range nuclear forces overcome 
electrostatic forces. At , this potential should be 

 (from the mass deficiency), and at 
around the nuclear radius ( ), it should 
become the Coulomb potential, . 

Temperature for fusion (quantum 
tunnelling): considering for a proton , and 

, we get 

, where 

 is the reduced mass (two body 
problem). This has to be equal to 

, so we solve for the 

wavelength . Then, by the equipartition 

theorem, , which is the 

protons
nucleonsElement
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same order of  magnitude of  the temperature of  the 
Sun we estimated in § Order of  magn. approx. 

CNO cycle: another way to fusion hydrogen to 
helium, but, using carbon, nitrogen and oxygen as 
catalysts (i.e., the fusion of  H with isotopes of  N, C 
and O [+decays] releases helium at some point). It 
requires the previous presence of  N, C and O. 

Binding energy: mass-energy difference between 
isolated and bound components: 

, where  is the 
number of  protons,  is the number of  nucleons and 

 is the experimental value of  the mass of  the 
bound nucleus. The values are plotted in the figure 
(seeing it reflected helps a lot!). For elements to the 
left of  iron, fusion with a proton is energetically 
favorable and the processes are exothermic (except 
for , that are stable). For elements heavier 
than iron, energy has to be invested to create 
elements even heavier, and nuclear fission 
(radioactive decay) releases energy when heavy 
elements turn into lighter ones. 

Alpha process/ladder: when H is exhausted from 
a star, He starts burning and fusing into heavier 
elements (alpha particle = He nucleus). This series of  
reactions creates heavier and heavier elements until 
Ni and Fe are reached.
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Ā
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Main seq., Sun-like to high mass stars 
( ): they follow mainly the CNO cycle, 
which requires high temperatures (lower mass stars 
follow mainly the PP chain). Radiation cannot 
transport energy fast enough in the core, so, a 
temperature gradient builds up and induces 
convection in the core  convective core. Massive 
stars have radiative envelopes, but in the most 
massive stars, the core is so big that they can become 
fully convective. 

Later phases, low mass stars ( ): 

Hydrogen shell burning: when the hydrogen is 
exhausted, the star core composed of  helium 
surrounded by a shell of  hydrogen. 
Temperatures and pressures can be high 
enough to cause hydrogen fusion in the 
hydrogen shell (and higher than in the main 
sequence). During this process, some of  this 
extra energy expands the envelope, so it cools 
down and the star becomes luminous, large 
and cool: a red giant. 

Helium core burning: after that, the helium core 
begins to collapse until , 

, when helium starts burning 
according to 

	 (triple alpha process: 

alpha + (2 alpha  Be)  C ) 

Be-8 decays quickly, so it has to react quickly 
with another alpha particle to produce C-12. 
Then, C-12 can also fuse with another alpha 
particle to produce O-16. 

Helium shell burning and planetary nebulae: After 
that, the star burns hydrogen in an outer 
shell, burns He in an inner shell, and 
contains a C/O core. During this phase, the 
high energy inside not only expands, but 
expels parts of  the atmosphere (stellar winds) 
at rates of    most of  the 
mass is lost after 10 000 yr, and forms a 
planetary nebula that expands at rates of  

. 

Time scales for a solar-mass star: H-core burning 
(main sequence): . H-shell burning 
(red giant): . He-core burning 
(horizontal branch): . He-shell 
burning (asymptotic giant branch): . 
Planetary nebula formation: . End 
result: white dwarf. 

M ≳ 1.2M⊙

⟹

M ≲ 8M⊙

ρ ∼ 107 kg/m3

T ∼ 108 K

4
2He + 4

2He ⇌ 8
4Be

8
4Be + 4

2He → 12
6 C

→ →

·M ∼ 10−4 M⊙/yr ⟹

∼ [10,30] km/s

∼ 1010 yr
∼ 109 yr

∼ 108 yr
∼ 107 yr

∼ 104 yr

Stellar evolution



Later phases, massive stars ( ): all 
previous phases minus planetary nebulae. Instead, a 
set of  reactions called collectively silicon burning 
takes place. 

Carbon-alpha-oxygen burning ( ): 

 	 (C + alpha  O;  O 

+ alpha  Ne) 

Carbon-carbon burning ( ): 

 

Oxygen-oxygen burning ( ): 

 

Silicon-alpha-burning ( ) 

	 (Si + alpha  S;  S + 

alpha  Ar, etc.) 

... until 

	 (Cr + alpha  Fe; Fe 

+ alpha  Ni) 

where the process becomes endothermic. 
Photons possess enough energy to destroy 
heavy nuclei; this is photodisintegration (e.g., 
Fe +   13 alpha + 4 n, or alpha  2 p + 2 
n). 

Timescales for a  star: H-core burning: 
; He-core burning: ; C-core 

burning: 500 yr; Si-burning: 1 day. After 
that: (type II) supernova explosion, compact 
object.

M ≳ 8M⊙

T ≳ 108 K
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8 O + γ

16
8 O + 4

2He → 20
10Ne + γ

→

→

T ≳ 6 ⋅ 108 K
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8 O + 2 4

2He, 23
12Mg + n

20
10Ne + 2 4

2He, 24
12Mg + γ

23
11Na + p

T ≳ 109 K

16
8 O + 16

8 O →

24
12Mg + 2 4

2He, 31
16S + n

28
14Si + 2 4

2He, 32
16S + γ

31
15P + p

T ≳ 3 ⋅ 109 K
28
14Si + 4

2He ⇌ 32
16S + γ

32
16S + 4

2He ⇌ 36
18Ar + γ

→

→

48
24Cr + 4

2He ⇌ 52
26Fe + γ

52
26Fe + 4

2He ⇌ 56
28Ni + γ

→

→

γ → →

25M⊙
5 ⋅ 106 yr 5 ⋅ 105 yr



This plot is the HR diagram of a 10 solar mass star computed with 
the Geneva stellar evolution code (Genec). The main sequence 
evolution lasts longer than the other phases, which is not evident 
from this plot. The stellar radius can be easily computed with the 
Stefan-Boltzmann law as R⋆ = L⋆ /(4πσStef-Boltz)T2
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This diagram summarizes the structure and evolution of a massive star of 10 
solar masses (as computed with Genec). As seen previously, the main 
sequence has a convective core and a radiative envelope. The structure 
changes when hydrogen burning moves from the core to the shell and helium 
core burning starts. At the end of the life of a star, mass loss due to winds 
becomes significant.

Kippenhahn diagram of a massive star
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Supernovae



Timescale for core collapse: from the 
hydrostatic equilibrium analysis, we get for the non-

equilibrium case, , where 
the acceleration is only radial. If  we turn the pressure 
off  suddenly, we get a free fall collapse. Then, 

. Now, we can approximate crudely, 

. For a stellar core with  and 

 (core  size of  the Earth), . 

Energy released: during the collapse of  the core, 
the gravitational energy released is approx. the 
difference between the initial and final states of  the 
star: , and 

 
, most of  which is carried out by the 

neutrinos of  the inverse beta decay during 
neutronization. The kinetic energy released is of  the 
order of  , and the energy carried out by 
photons, of  the order of  . The peak brightness 
of  a supernova is of  around . 

Elements beyond iron: in a neutron-rich 
environment, an atomic nucleus can capture a 
neutron; this neutron then undergoes beta decay (the 
captured neutron becomes a proton and releases an 

electron + neutrino), leaving the nucleus with 1 
proton more than before. There are two processes 
that involve these reactions: if  neutrons are captured 
more rapidly than beta decay can eliminate them, 
heavy neutron-rich elements build up rapidly (r-
process); on the contrary, heavy elements build up 
slowly (s-process). 

Supernova classification: based on spectral lines, 
not physical mechanisms. Basic: type I (with 
hydrogen) and type II (no hydrogen). Type Ia 
supernovas are caused by the detonation of  a white 
dwarf  by accretion (from a donor star). The rest (type 
Ib, Ic, II) are core-collapse supernovas. 

Type Ia: the core mass of  a white dwarf  exceeds the 
Chandrasekhar limit because of  accretion from a 
donor star. All type I supernovae share a similar rate 
of  decline of  their brightness after their peak. This 
can be explained by the half-life of   decay from 

 to  ( ). The total number of  atoms 
present with time is . From the 
energy given to the supernova by the reaction, it can 
be estimated that the magnitude (or change or the 
logarithm of  luminosity with time) decays at a rate of  

, the rate that is observed after 50 days 
in a type Ia supernova. This is why they are used as 
standard candles. 

dM
d2r
dt2

= − dP −
GM
r2

dM

d2r
dt2

= −
GM
r2

R
τ2
ff

∼
GM
R2

M ≈ M⊙

R ≈ 6 ⋅ 106 m ∼ τff ∼ 1 s

Ubefore = − GM2
⊙/(6 ⋅ 106 m) ∼ − 4 ⋅ 1043 J

Uafter = − GM2
⊙/(104 m) ∼ − 4 ⋅ 1043 J

⟹ ΔU ∼ 1046J

1044 J
1042 J

109 L⊙

β
56
27Co 56

27Fe τ = 77.7 d
N(t) = N0e−ln(2)t/τ

∼ 0.01 mag/d



Type II: isolated stars. Highly dependent on the mass of  
the star (mass-energy available) and metallicity (how 
effective is radiation pressure: more metals means 
more opaque media where radiation pressure 
produces more force). Photodesintegration of  nuclei 
by radiation and neutronization reduce radiation 
support at the core of  the star, rapid triggering 
gravitational core collapse (see estimation of  
timescale above  speeds of  up to  for 
the outer core). The outer core collapses 
supersonically, but the inner core collapses 
subsonically. When nuclear densities ( ) 
are reached at the inner core, the nuclear force 
(residual strong interaction) repels the infalling 
material, halting the collapse. 

Type II: rebound: Then, the outer material rebounds 
and a pressure shock wave propagates outwards. The 
material ejection process is not fully understood, but 
it could involve neutrinos being trapped by the fast 
increase of  density in the inner core. Neutrinos 
diffuse outwards through the outer core and their 
interactions (neutrino transport) may push the 
material outwards until they reach the 
"neutrinosphere" (low density threshold), beyond 
which they can escape without further interaction. At 
the boundary of  the outer core, there is still a Si 
burning shell. 

Pair-creation instability: in very massive cores, 
gamma rays can create electron-positron 
pairs instead of  being used for radiation 
pressure. This lowers radiation pressure and 
triggers collapse. Then, oxygen is ignited 
explosively and mass is lost from the core, 
even leaving no remnant behind. For this 
massive cores, it is assumed the mass lost by 
stellar winds during the main sequence is 
small, which means low metallicity ( low 
opacity low radiation pressure that drives 
the wind). 

Fate of  the most massive stars: in the 
diagram of  the supernova types, for the most 
massive stars in the less-than-solar metallicity 
regime, the direct formation of  a black hole 
means that no supernova shock is launched, 
and so, there is only very faint or no 
supernova explosion observed.

⟹ 70 000 km/s

∼ 1014 g/cm3

⟹
⟹



Not all supernovae are the same. These plots show the supernova types for 
isolated stars. As it can be seen from the plot, the kind of supernova and the kind 
of remnant produced depend strongly on metallicity. For low metallicity, direct 
collapse onto blackholes becomes more common compared to solar-like 
metallicity.

Supernova types and remnants

Heger et al. (2003) ApJ 591 288.

Supernova types. The black regions mean no 
SN shock is launched.

Remnants for a single progenitor. (Adapted from 
Wikipedia)



The classical description of supernovae and remnants 
does not include rotation. In this paper, the plot from the 
previous page has been updated to include rotation. 
Rotating models show that at high metallicities it's more 
difficult to have pair-instability supernovae.

Remnants for rotating stars

Hirschi et al 2025 MNRAS 543 2796

Remnants for non-rotating models Remnants for rotating models



Stellar remnants



Introduction to general relativity 

Space-time is described by the variables , 
 (e.g.,  in Cartesian coordinates). In 

Euclidian space, we can define the distance between 
two points by using the Pythagorean theorem: 

. In special relativity, however, 
we know that this distance is not measured the same 
by an observer moving with respect to us, due to 
Lorentz contraction. The closest we can define to an 
invariant "distance" is called spacetime interval: 

 (this can be shown to 
be invariant for any observer by using the Lorentz 
transformations, differentiating and substituting). 
The meaning of  the spacetime interval can be seen 
by placing ourselves in a frame of  reference of  a 
moving particle. In that frame of  reference, the 
particle appears to be static ( ), and 
the measured time is the proper time , so that 

. Since  is an invariant, we can 
always write that relation in any frame. 

In general relativity, the spacetime interval also shows 
the curvature of  the spacetime, which is caused by 
the presence of  matter and energy. In order to start 
the derivation, we are interested in knowing the 
spacetime interval (sometimes called "the metric") 
outside of  a simple spherical object of  mass . The 
full solution is called the Schwarzschild solution. As a 

first order approximation (enough for this derivation), 
a comparison with Newtonian gravity yields  

 

(this comparison can be done by studying the motion 
of  a particle under a weak potential in classical 
mechanics, with a Lagrangian, and relativity, by 
saying that the trajectory of  a particle has to 
minimize the proper time [variational calculus]). For 
a spherical object of  mass  the potential is 

. 

The exact metric for the exterior spacetime that 
describes a spherically-symmetric object in spherical-
like coordinates is 

 

and it is called the Schwarzschild metric. This metric is 
used for example for understanding black holes, 
regions of  spacetime so distorted that light cannot 
escape from there. 

x0 = ct
x1, x2, x3 = x, y, z

ds2
Eucl = dx2 + dy2 + dz2

ds2 = − c2dt2 + dx2 + dy2 + dz2

dx = dy = dz = 0
dτ

ds2 = − c2dτ2 ds2

M

ds2 ≈ − (1 +
2Φ
c2 ) c2dt2 + dx2 + dy2 + dz2

M
Φ = − GM/r

ds2 = − (1 −
2GM
c2r ) c2dt2 + (1 −

2GM
c2r )

−1

dr2 + r2(dθ2 + sin2 θdϕ2)



Neutron stars: introduction to the equation 
of  state: 

After the supernova explosion, the stellar core 
collapses under gravity and squeezes together. 
Under those extreme circumstances, inverse beta 
decay starts to be more and more energetically 
favorable to the heavy nucleons in the stellar core, 
according to the equation 

. 

Normally, the inverse equation happens (beta 
decay), meaning, neutrons on their own decay into 
protons, electrons, and neutrinos. Under the 

inverse beta decay, matter becomes neutronized and 
this process is called neutron drip. A neutron star is 
not composed entirely of  neutrons, but instead 
several degrees of  neutronization happen in 
different layers of  the neutron stars (there is an 
electron atmosphere, a crust, a core). We don't fully 
know what the core is made from: this is the 
problem of  the equation of  state.

mass-energy + p + e ⟶ n + ν



Neutron stars: approximation of  the 
degenerate gas: an order-of-magnitude argument 
to derive the degeneracy pressure that happens inside 
of  a neutron star is as follows. From quantum 
mechanics, we know: phase-space cells are discretized 
( ), and two identical fermions cannot have 
the same quantum state simultaneously. There is a 
minimum energy that a group of   fermions can 
have so they don't have the same quantum state 
simultaneously. That minimum (kinetic) energy 
(Fermi energy) determines a Fermi momentum, 
which originates the pressure. Then, the pressure 
should depend on the number of  fermions, and the 
phase-space cell size. We can include the spatial size 
in a volume, and say that  should depend on , the 
number density. The phase-space size is also 
dependent on mass (more mass, more momentum), 
and  comes into play because of  quantization of  the 
phase space. The pressure should not depend on 
temperature, since the pressure must be felt in the 
minimum energy state (“ ”). Then, , 
where the exponents are determined by dimensional 
analysis, yielding , in agreement with 
the correct calculation (except for a dimensionless 
constant of  order unity). For a relativistic degenerate 
gas, we replace the dependency  and 
recalculate exponents so we get . 

Mass and radius: if  we solve the relativistic 
equivalent to the structure equations (TOV 
equations) for a neutron star, we find out that 
depending on what we assume the neutron star is 
composed of, we get different radii for a given 
neutron star mass. Strangely, more massive neutron 
stars tend to be smaller, not larger (they become more 
compact). If  we can measure the mass and radius of  
neutrons stars very accurately, we could find out what 
they are made of, from the predictions of  the radius 
by equations of  state. 

Pulsars: when matter falls down onto the surface of  
a neutron star, its gravitational energy is released as 
radiation. Because of  the strong magnetic fields of  
neutron stars, matter is accreted near magnetic poles 
on the surface magnetic field. Those sites become 
hotspots. As the neutron star rotates and the light from 
a hotspot faces us on Earth, we see a maximum of  
radiation, and when a hotspot is on the hidden side 
of  the neutron star, we see a minimum. This is a 
pulsar. Pulsars can rotate at incredibly fast speeds, 
reching up to 716 Hz for the fastest spining pulsar 
known to date. Because spacetime is curved, and 
light curves with it, we actually can see light from 
behind the neutron star in front. The pulses of  a 
pulsar can be used to measure the radii of  neutron 
stars.

ΔpΔx ∼ ℏ

N

P n

ℏ

T = 0 P ∼ ℏαmβnγ

P ∼ ℏ2m−1n5/3

m → c
P ∼ ℏcn4/3



The left plot shows several calculations of the equation of state of a neutron star 
assuming different compositions. The right plot shows what the predicted 
masses and radii yield for different compositions. Except for the few gray 
curves, more massive a neutron star is, the smaller the radius.

Equation of state and mass-radius curve

Özel+Freire 2016 Annu Rev Astron Astroph 54 401

http://www.annualreviews.org/doi/full/10.1146/annurev-astro-081915-023322


These plots show the pulses of a pulsar assuming different 
models for the spacetime (different line colors). The left and 
right panel show different shapes and locations of the 
hotspots in the neutron star.

Pulses of a pulsar

Oliva & Frutos 2021 MNRAS 505 2870

https://doi.org/10.1093/mnras/stab1380
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