
Fluid dynamics 
The thermodynamic state of  a small volume of  fluid  is given by its density, 

 and its temperature . Let  be the velocity of  the small 
volume located in  at time . 

Time derivatives: Let . For some quantity , the time 
derivative is . But making a Taylor 

expansion, , which gives us 

. The total derivative is called the Lagrangian derivative and the partial one, the Eulerian 
derivative. 

Continuity equation: for the change of  mass, . In general, 

however, . Using the Gauss's theorem, . 

Euler equation (momentum equation): Newton's second law: . But 

 (where , i.e., specific force = acceleration) and 

. Inserting everything and changing the Lagrangian derivative, 

. 

Advection vs convection: convection is the movement of  a fluid mainly due to density gradients created by 
thermal gradients; advection is the more general transport of  material or physical quantity by the velocity 
of  the fluid. 

Advection equation: the general equation  states the advection for a conserved quantity 

described by a scalar field  due to the transport in the velocity field . If   
(incompressible flow / solenoidal) . 

Conservative form of  the momentum equation: consider a element of  fluid that contains a momentum in 
the x direction . Then, let's consider how this momentum changes in time in a 
similar way to what we did for the continuity equation: . Here,  is the 

δV
ρ (x⃗, t ) T (x⃗, t ) v⃗(x⃗, t )

x⃗ t

x⃗(t + δt ) = x⃗ + v⃗δt Q (x⃗, t )
dQ
d t

= lim
δt→0

Q (x⃗ + v⃗δt , t + δt ) − Q (x⃗, t )
δt

Q (x⃗ + v⃗δt , t + δt ) = Q (x⃗, t ) + δt
∂Q
∂t

+ δt v⃗ ⋅ ⃗∇ Q
dQ
d t

=
∂Q
∂t

+ v⃗ ⋅ ⃗∇ Q

δm
δt

=
ρδV
δt

=
ρAδ x

δt
= ρAv

∂
∂t ∫ ρ d V = − ∮ ρ v⃗ ⋅ d ⃗A

∂ρ
∂t

+ ⃗∇ ⋅ (ρ v⃗) = 0

ρδV
d v⃗
d t

= δ ⃗F body + δ ⃗F surface
δ ⃗F body = ρδV ⃗F 𝒟[ ⃗F ] = F /M

δ ⃗F surface = − ∮ Pd ⃗A = − ∫ ⃗∇ Pd V

∂ v⃗
∂t

+ (v⃗ ⋅ ⃗∇ )v⃗ = −
1
ρ

⃗∇ P + ⃗F

∂ψ
∂t

+ ⃗∇ ⋅ (ψ v⃗) = 0

ψ v⃗ ⃗∇ ⋅ v⃗ = 0
⟹

∂ψ
∂t

+ v⃗ ⋅ ⃗∇ ψ = 0

δ𝒫x = ρ vxδV
δ𝒫x

δt
=

ρ vxδV
δt

= ρ vx A
δ x
δt

= ρ vx Av vx

Plasma Astrophysics
notes on

para Introducción a la Física Espacial

ρ vx



x-component of  the velocity inside of  the fluid element (used to compute the momentum of  said fluid 
element), and  is the velocity across the wall, that is, the velocity that transports (advects) the momentum 
out of  the fluid element across the wall A. They are the same velocity field, just measured at different 
positions (they reduce to the same vector value when ). Then, in general for all the walls, 

  (this means in words that any momentum decrease inside of  the fluid 

element in the x-direction must happen because it is lost through the walls of  the element). Using Gauss's 
theorem,  (momentum is advected and conserved). This is true if  there are 

no forces. If  there are forces, they act as the sources of  the equation and we have 
. One can show that this equation is equivalent to the Euler equation. 

There are similar equations for the y and z directions. 

Conservation of  energy: the same reasoning can be applied for the scalar field defined by the sum of  the 
(volumetric) kinetic energy  and the (volumetric) internal energy  and we obtain an equation of  

conservation of  energy, where the sources can be: heating/cooling of  the gas by thermal contraction/
expansion, mechanical heating/cooling by external forces, heating/cooling by other processes such as 
radiation (absorption/emission), etc. In addition, we need an equation of  state (relation between pressure 
and density, for example, the ideal gas law).  

Hydrodynamical perturbations 
Basic equations: The equations of  hydrodynamics are: (a) the continuity equation, 
(b) the Euler equation. In an astrophysical plasma,  (force per unit mass) is the 
gravitational field, , that satisfies the Poisson equation  (c). 

Thermodynamics: small perturbations of  pressure and density imply changes in 
temperature  it's not an isothermal process. However, small perturbations don't 
cause significant heat exchange with surroundings  adiabatic process with 
equation  (d). Also, the equation of  state of  an ideal gas holds 
( ). 

Perturbations: the plasma is in an initial equilibrium state  (at the beginning there is no 
displacement and then, no velocity). The perturbed values are then 

 where . 

0th-order results: 

(a) .	 (a.0)	 	 (b) .	 (b.0) 
(c) . 	 	 	 (c.0)	 	 (d) .	 	 (d.0) 
Note that a self-gravitating, uniform, infinite gas cannot exist, since if   is constant everywhere, 

, but then, . 

1st-order results: 

, and with (d.0),  . Since 

, we can expand the rhs, so that   (d.1). 
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(a), (a.0) . The term  is smaller than first order, so it goes to zero, and 
 is constant. This implies   (a.1). 

(b) , but the underlined terms 
cancel each other due to (b.0). The second term of  the Lagrangian derivative is small, and so are the 
other terms involving . Then, we have . Using (d.1), this becomes 

  (b.1). 

(c), (c.0)   (c.1). 

Sound equation: if  gravity is negligible, for example, in the atmosphere, we have, for eq. (b.1), and taking the 
divergence in both sides, . Rearranging the lhs, we can have , that we 

can substitute using (a.1), so that we have . This is a wave equation, and so we know that  

has to be the speed of  sound. This means that perturbations travel with the speed of  sound (that was 
evaluated in the 0th order). 

Periodic perturbations: we take the equations (a.1), (b.1) and (c.1). If  the small perturbations are periodic, we 
can write solutions for each variable  of  the form , which is the same as taking the Fourier 
transform of  each equation; moreover, , . Then, the system of  equations 
becomes:    (a1F)	   (b1F)	   (c1F) 

Jeans instability: (a1F), (  from b1F)  . (c1F), ( )  . 

We write this dispersion relation as . Notice that  is real only if  

 (oscillation), but if  ,  becomes complex and the exponential on the temporal part of  each 
variable becomes real, leading to an exponential grow. This means that if  the size of  the perturbation is 
larger than  and self-gravity overpowers acoustic waves. The mass that corresponds to  is 
called the Jeans mass, and is calculated as . Using (d.1) and the equation of  state of  the ideal 

gas, as well as the approximation  (slow perturbations are approx. isothermal), then, 

 (  is the mass of  a molecule). 

Waves vs instabilities: notice that in the case of  the sound equation, we wanted a perturbation small enough 
to be propagated as a wave. On the contrary, in the case of  the Jeans instability, we wanted a perturbation 
large enough to grow indefinitely and form an instability. 

Equations of magneto-hydrodynamics 
Curl of  a cross product: . First, we apply the 
product rule (marking which vector  is acting on) and then we expand using the BAC-CAB rule. 

Gradient of  a dot product:  (the dot marks where the derivative acts on). 
But applying the BAC-CAB rule to the cross product of  a curl, , one 
of  the terms appear.  Making  and substituting, we find 

. 

Ohm's law:  or , but since the magnetic field also contributes to the force on charges, 
. 
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Ampère-Maxwell equation: for astrophysical plasmas with , we ignore the displacement current term. 
So, .  

Electric field: combining Ampère's and Ohm's laws, . For astrophysical plasmas,  is 

more relevant than , because charges are well mixed. 

Induction equation: Faraday's law: . Substituting the electric field, 

, where . [Application of  the "BAC-CAB" rule for gradients, one 

of  the terms will be .  is called the advection term.] 

Euler equation: modification: . Substituting  (with Ampère's law), using the gradient of  a 

dot product when both vectors are equal, . The first new 

term is the magnetic field pressure and the second term, the magnetic tension force, which tends to 
straighten magnetic field lines.  

Summary: for an astrophysical plasma, there is a system of  two vector equations: 

 

The usual goal is to solve for  and . MHD is ideal if  . This equation has SI units, for Gaussian, we 

use the transformation , which leaves the first equation invariant and the second one, 

with . 

Flux freezing 
Magnetic Reynolds number: Comparison of  the two terms of  the induction equation: 

. For an astrophysical plasma,  is very large, compared to a laboratory 

plasma. Then, the induction equation can be written as  for a laboratory plasma 

and  for an astrophysical plasma. 

Alfvén's theorem of  flux freezing: The Lagrangian derivative of  the magnetic flux is 

. The change in the differential of  area can be computed by noticing that 

its motion sweeps a cylinder (the full area to integrate is composed of  small loops that delimit ). Since 
the integral of  the vector area of  a closed surface is zero, . Then, 

 . Note that if  the 

magnetic field is static (time derivative = 0), a configuration that works is a velocity field that is parallel to 
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the magnetic field. The flux freezing theorem means that the magnetic flux is conserved and that if  one 
moves the plasma, the magnetic field lines must also move with it (it's frozen). 

Alfvén waves 
Consider a static ( ) plasma threaded by a magnetic field like in the first 
figure on the right. Now imagine there is a small perturbation  perpendicular 
to the original magnetic field, accompanied by a small perturbation of  the 
magnetic field also in the same direction. Using perturbation theory like we 
did before, we find that the perturbation propagates as a wave (Alfvén wave) 
along the field lines with wave vector  and speed  (the 
subindex 0 means the unperturbed value). For this to happen, perturbation theory requires the perturbed 
velocity to be  and we say that the the flow is sub-Alfvénic. If  the perturbed velocity is larger 
than the Alfvén velocity ( ), then we don't have an Alfvén wave anymore: the flow becomes super-
Alfvénic and the velocity field simply drags the magnetic field lines with it without leaving them a chance 
to exert a restoring force and create a wave anymore. In a sub-Alfvénic flow, the magnetic field guides the 
flow (any deviation is restored by propagating an Alfvén wave), and in a super-Alfvénic flow, the velocity 
field drags the magnetic field lines. 

Very simple derivation of  the Alfvén speed: we take an order-of-magnitude view of  the momentum equation 
ignoring external forces and the thermal pressure gradient. If  we replace the time derivatives by  (a 
characteristic propagation time of  the perturbation) and the gradients by  (a characteristic propagation 
distance of  the perturbation) and think in 1D (imagining that we know already that the perturbation 

propagates along the magnetic field line), we get  . Substituting  (the characteristic 

speed of  propagation of  the perturbation), we arrive at .  

Magnetoacoustic waves: if  we don't ignore the thermal pressure gradient, the perturbation produces a 
combination of  Alfvén and sound waves. 

Non-ideal MHD effects 
To summarize what our discussion on magnetic flux: we have Faraday's law: 

 

and then, we have several contributions (that must be added) to the electric field . 

a)   conservation of  magnetic flux (advective term) 

b)  : Ohmic dissipation (we substitute  to get the equations we discussed above) 

Now we add new contributions: 

Ambipolar drift: consider a partly ionized plasma made up of  a fully ionized part (density , flow velocity 
, pressure ) and a neutral part (density , flow velocity , pressure ). The velocity of  the center of  

mass is  ( : total density). Since the ions (negative and positive) have different masses, 
this creates a net current  (normal plasma treatment); however, the neutral species also has a different 
mass, and it's not affected by the magnetic and electric fields, which means that there is a drift velocity 

 between the plasma and the neutral species. Ambipolar drift redistributes magnetic flux, 
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which can trigger star formation; it affects short wavelength interstellar interstellar turbulence, the 
structure of  interstellar shocks, and the nature of  magnetic reconnection. 

Strong coupling approximation: the plasma and neutrals are coupled dynamically and thermally, and if  
the medium is weakly ionized, one can treat it as a single fluid. We ignore the plasma inertia 
( ), and so, the momentum equation is simply the same as the plasma (b). For 
the induction equation (d), however, only the plasma is affected, so,   

. The plasma and neutrals follow almost the same 
dynamics, but the field is not perfectly frozen into the medium because of  ambipolar drift. 

Multiple fluids: it is necessary to take a multi-fluid approach in high freq. waves, small scale 
turbulence, turbulent dynamos, shocks, magnetic reconnection. 

Heavy ion approximation: suitable for problems in which the plasma-neutral coupling is quite strong, 
such as studies of  large-scale turbulence in dense molecular clouds. It's less successful for weakly 
coupled problems (plasma and gas follow their own dynamics). For example, in molecular clouds, 
the ratio of  plasma pressure to magnetic pressure is much smaller than assumed in the heavy ion 
approximation. 

With those approximations, ambipolar diffusion, we can define another contribution to the 
electric field: 

c)  

where  is the ambipolar diffusivity (equivalent to the Ohmic resistivity and dependent on the 
microphysics of  the plasma, for example the collision rates between charged particles and 
neutrals) 

Hall effect: the current of  the plasma, while immersed in the magnetic field of  the plasma itself  induces an 
electric field 

	 d)  

Therefore, the induction equation  becomes a kind of  conservation equation (but using a 

curl instead of  a divergence) for the magnetic flux with an advective term  (the velocity field 
advects the magnetic flux) and several sinks (ways of  getting rid of  the magnetic flux) via Ohmic 
dissipation, ambipolar diffusion and the Hall effect. 

Magnetic buoyancy 
Consider a horizontal cylindrical region of  concentrated magnetic field, called 
magnetic flux tube. The flux is frozen, which means that both the plasma and the 
magnetic field respond immediately to changes. If  there is hydrostatic balance, 

. Then, . But if  the gas is ideal, , and if  the 

temperatures are the same, , making the whole section of  the tube 
buoyant. 
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Magnetic reconnection 
c) Opposing magnetic field lines approach each other. 

d) When the lines are too close,  can no longer be ignored 
and a diffusion region is created. The magnetic field 
configuration requires the existence of  a current sheet. 

e) Magnetic field lines are reconfigured. The process makes a 
conversion of  magnetic energy into kinetic energy. Plasma is 
propelled. The process is sustainable: lowering the magnetic 
field in the center also lowers the pressure, causing plasma to 
get "sucked in" and the process to continue. 
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