
Radiation and matter
para Introducción a la Física Espacial



Contents

Radiative transfer 

Opacities for stellar material 

Dust opacities and polarization



Radiative transfer



Basic quantities of radiative transfer

Quantity Definition Units

Luminosity/
power

Flux

Intensity W m−2 sr−1

F = L /A W m−2

W

dF = I cos θdΩ

(SB Law: 
)L = σAT4



Blackbody radiation: 
Planck's law: the energy 
density  for the 
frequency  (formally, the 
frequency range, ) 
is 

 

Specific intensity. The energy of  a given 
frequency coming from a solid angle  and hitting 
over an area  (projected perpendicularly to it) in a 
time  is , where  
is the specific intensity 

.Radiation flux for a frequency : 
 (power that crosses an area from all 

directions). The total flux for all frequencies is 
. 

Uniformly radiating 
sphere: consider a sphere 
of  radius  that radiates 
with uniform intensity . z-

axis along . The flux that an 

observer located at  receives is 

, 

but since , . 
Observe that the term  is the solid angle 
subtended by the sphere at P (both making the star 
bigger or closer have the same effect). 

Energy density: energy  that passes through a 
cylinder of  base  and height : 

  ; if  isotropic, 

 

Radiation pressure. Radiation has momentum 
. 

. The pressure counting all directions is 
; if  isotropic, . 

Comparing with the isotropic energy density, 
. 

Radiative transfer in empty space: the 
radiation going through 2 due to 1 is , 
and, by symmetry, the radiation that 1 receives due to 

Uν
ν

ν, ν + dν

Uνdν =
8πh
c3

ν3dν
exp [hν/(kBT )] − 1

:=
4π
c

Bν(T )

dΩ
dA

dt dEνdν = Iν( ⃗r, t, n̂)cos θ dA dt dΩ dν Iν

ν

Fν = ∫ Iν cos θdΩ

F = ∫ Fνdν

R⋆
I0

d

P F = ∫ I cos θdΩ

= I0 ∫
2π

0
dϕ∫

θmax

0
cos θ sin θdθ = I0 ⋅

1
2

sin2 θmax ⋅ 2π

sin θmax = R⋆ /d ⟹ F = I0π(R⋆ /d )2

π(R⋆ /d )2

dEν
dA cdt

dEν

cos θdA cdt
=

Iν

c
dΩ ⟹ Uν = ∫

Iν

c
dΩ

Uν =
4π
c

Iν

dEν /c
pressure =

force⊥

dA
=

momentum
dtdA

=
dEν cos θ

c
1

dAdt
=

Iν

c
cos2 θdΩ

Pν =
1
c ∫ Iν cos2 θdΩ Pν =

4π
3

Iν

c

Pν =
1
3

Uν

Iν2dA2dtdΩ2dν



2 is . But the energy is 
conserved, and , so, 

, which implies that, along the 
ray path,  in empty space. 
Conclusion: the specific intensity does 
not depend on distance, so it's a 
measure of  surface brightness (total  but the 
angular size also is , so the effects cancel out). 

Radiative transfer equation: in the presence of  
matter, . If  matter emits, it sums  
(emission coefficient, units of  intensity/length). If  
matter absorbs, it will diminish the intensity, so one 
subtracts an amount proportional to ;  is the 
absorption coefficient. 

Optical depth: if  we consider absorption only, 
 . Integrating in a 

path, we get . We define 

the integral in the rhs as the optical depth . Then, 
the solution for only absorption is . If  
the optical depth is , the intensity at the 
beginning is almost the same as at the end  the 
medium is optically thin or transparent. If  the optical 
depth is , the final intensity is about zero  the 
medium is optically thick or opaque. 

Source function: we define . We can 
have the radiative transfer equation in terms of  : 

. This differential 

equation can be solved by using an integrating factor 
:  ; we integrate from  in 

the ray path, which corresponds to , 
yielding .   is 

the boundary condition and can be fixed by 
including incoming radiation.  is the intensity 
emerging from the medium to the observer; the first 
term is absorption along the ray, and the second term 
is the sum of  the contributions of  all sources along 
the ray. 

Limiting cases: for constant coefficients and no 
incoming radiation, . If  the object 
is optically thin, ,  , with , 
being  the length of  the material . If  the 
object is optically thick,  . 

Kirchhoff's law: when matter is in thermodynamic 
equilibrium, all that is emitted must be absorbed. 
That means that , but since  for 
equilibrium, . 

Iν1dA1dtdΩ1dν
dΩ = dA /R2

Iν1 = Iν2
dIν

ds
= 0

I ∝ r−2

∝ r−2

dIν

ds
= jν − ανIν jν

Iν αν

dIν /ds = − ανIν ⟹ dIν /Iν = ανds

ln [ Iν(s)
Iν(s0) ] = − ∫

s

s0

αν(s′￼)ds′￼

τν
Iν(s) = Iν(s0)e−τν

≪ 1
⟹

≫ 1 ⟹

Sν := jν /αν
Sν, τν

1
αν

dIν

ds
=

jν
αν

− Iν ⟹
dIν

dτν
= Sν + Iν

eτν
d
dt

(Iνeτν) = Sνeτ
ν s0 < s′￼< s

0 < τ′￼ν < τν

Iν(τν) = Iν(0)e−τν + ∫
τν

0
e−(τν−τ′￼ν)Sν(τ′￼ν)dτ′￼ν Iν(0)

Iν(τν)

Iν(τν) = Sν(1 − e−τν)
τν ≪ 1 e−τν ≈ 1 − τν τν = ανL

L ⟹ Iν = jνL
τν ≫ 1 ⟹ Iν = Sν

jν = ανIν Iν = Bν
Sν = jν /αν = ανIν /αν = Bν(T )

2
1



The protostars contained in this accretion disk emit blackbody 
radiation. This radiation is greatly absorbed by the gas and dust 
present in the molecular cloud, but not in all wavelengths by the 
same amount. In visible light, the medium is opaque, but not in these 
wavelengths detected by ALMA.

Looking through a dense molecular cloud

Li, Beuther, Oliva et al 2025 Nat Astron 

https://doi.org/10.1038/s41550-025-02682-9


Opacities for stellar 
material



Saha equation (conceptual): it describes 
ionization number densities from all possible initial 
states (ionization from the ground state, form the first 
excited state, from the second excited state, etc.) as a 
function of  temperature. E.g., one can calculate that 
for temperatures of   K, hydrogen is almost fully 
ionized. 

Calculations of  opacity: based on the number of  
atoms and electrons in various energy levels 
(Boltzmann distribution) and various stages of  
ionization (Saha equation), one can in principle 
compute the opacity by computing absorption cross-
sections for different processes. Since atomic energy 
levels can be bound (discrete) or free (continuum), 
absorption of  radiation can be due to three different 
kinds of  transitions: bound-bound, bound-free and 
free-free. The sum of  all cross sections plus the effect 
of  stimulated emission gives the absorption 
coefficient and the opacity. Free-free absorption is the 
"inverse" of  Bremsstrahlung (free-free emission), and 
it's caused by a free electron gaining energy during a 
collision with an ion by absorbing a photon. 

Kramer's law: with approximations, and for high 
temperatures ( ), opacity goes like  
(bound-free, free-free). Higher temperature  less 
remaining neutrals  less chances to photoionize 

 low opacity. For low T (below ), most 

atoms are in their lowest energy levels. Photons don't 
have enough energy to knock electrons off  the atoms, 
so not much radiation is absorbed and opacity drops 
as well (=transparency).  Opacity for solar 
metallicity peaks at  . 

Thomson scattering and opacity: For very high 
temperatures (fully ionized gas), Thomson scattering 
starts happening (free electrons scatter photons). The 
extinction coefficient is  (where  is the Thomson 
cross section, i.e., how the photon sees the electron) 
and the opacity is then . The classical 
cross section calculation of   (electron in a 
oscillating electric field) depends on frequency and 
reduces to  for very high frequencies. For low 
frequencies where the electron is tightly bound to an 
atom (behaving like a spring with freq. ), one gets 
Rayleigh scattering,  

Solar surface opacity: the solar surface is opaque, 
but the black body radiation (at ) doesn't 
have enough energy to ionize H. However,  ions 
are also formed because the electron doesn't fully 
screen the positive electrostatic force of  the nucleus. 
Breaking this bond brings the required opacity.

105

T ≳ 105 K χ ∝ ρT−7/2

⟹
⟹

⟹ ∼ 104 K

∴
T ∼ 105 K

neσT σT

χT = neσT /ρ
σT

σT

ω0
σR = σT(ω/ω0)4

T ∼ 6000 K
H−



Left: In this plot produced with the Geneva stellar evolution code, one can 
see that the interior of the star (where temperature is high) is more 
transparent than the surface (see Kramer's law). This is confirmed by the 
plot on the right, were the opacity is plotted against temperature. Opacity 
changes as the kind of microphysical process that produces absorption 
changes according to the temperature, density, etc.

Opacity inside of a massive star

radial mass coordinate = enclosed mass / total mass 
(0 = center of the star, 1 = surface)
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Dust opacities and 
polarization



Dust efficiency of  extinction: dust grains are big 
compared to gas molecules, so they contribute more 
to the extinction of  radiation. We can write for the 
dust  , where  is the cross-section for a 
typical grain of  radius , .  is the extinction 
efficiency factor and it can be obtained empirically as 

, where the subindex 0 means a 

reference value. Empirically, we have 
 and the ratio  is the 

normalized total extinction. In star-forming regions, 
the gas is transparent in the far IR and mm 
wavelengths, so hot dust clouds dominate emission 
(one observes dust but not gas at those wavelengths). 

Dust sizes and composition: observations of  
dust extinction are consistent with dust particles 
composed of  refractory cores surrounded by icy 
mantles. The cores are rich in silicates and the 
mantle is a mixture of  water ice and other molecules. 
In most models, a radius of  , but there 
must be a dust size distribution (for example, the 
Mattis-Rumpl-Nordsiek distribution has upper and 
lower cutoffs at 0.25 µm and 0.005 µm). 

Dust abundances: consider a HI cloud with 
hydrogen number density . We define  
to be the total geometric cross section of  grains per 
hydrogen atom. Given that  is the photon 
mean free path and (rad.transf.eqn.)   
the optical depth, we write  for a 
column of  material of  length . Observationally, one 
gets  cm , and with this, 

. The dust to gas ratio is computed 

as  and yields 0.02, but the widely 

used value is 0.01. 

ρdκν = ndσdQν σd
ad = πa2

d Qν

Qλ

Qλ0

=
Aλ /EB−V

Aλ0
/EB−V

Qλ = 0.14Aλ /EB−V Aλ /EB−V

ad ∼ 0.1 μm

nH Σd = ndσd /nH

1/(ρκν)
⟹ ρκνΔℓ = Δτν

Δτν = (ndL)σdQλ
L

Σd = 1.0 ⋅ 10−21 2

κλ = 420 cm2 g−1Qλ

fd =
4πa3

d ρd

3μmH ( nd

nH )



Dust polarization: dust grains are able to polarize 
radiation by scattering. If  there is a stellar source 
nearby, radiation travels until it hits a dust grain and is 
scattered. In the directions perpendicular to the 
incident ray, the radiation is linearly polarized. If  there 
is a magnetic field  present in the environment, dust 
grains (which are irregularly shaped, not really spheres, 
and have electric charge) will experience a magnetic 
torque that eventually orients them in the direction of  
the magnetic field. When radiation from a background 
source goes through the oriented dust grains, the 
transmitted radiation will be polarized in the direction 
of  the alignment (= the direction of  the magnetic field).

B



When massive stars photoionize 
surrounding material, it becomes 
transparent to radiation. Material 
from the cloud that is not yet ionized 
is opaque.

Stellar feedback in Orion massive stars 
(photoionization)

opaque gas and dust

opaque gas and dust

transparent



In this example paper, dust opacities are computed using 
different models for the dust grains. The figure shows the 
absorption cross-section per hydrogen nucleus for dust 
grains. Note how at large wavelengths, the dust opacity 
decreases.

Dust opacity calculation

Laor & Draine 1992 ApJ

https://ui.adsabs.harvard.edu/abs/1993ApJ...402..441L/abstract


Thanks to dust polarization, one can study the orientation and strength of the 
magnetic field of a protostellar jet deep inside of a cloud. Linear polarization 
allows the study of the orientation of the field, and circular polarization allows for 
the measurement of the magnetic field strength along the line of sight.

Probing the magnetic field of a protostellar jet with dust

Moscadelli, Oliva et al 2023 A&A

https://ui.adsabs.harvard.edu/abs/2023A&A...680A.107M/abstract


In this case, dust polarization was used to measure 
galactic magnetic fields in Orion A. The lines are the 
inferred magnetic field perpendicular to the observer's 
plane.

Galactic magnetic fields

Soler 2019 A&A

https://doi.org/10.1051/0004-6361/201935779
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