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Problem: show the property of similarity of the Fourier transform
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Problem: show the property of displacement in time of the Fourier transform.
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Problem: show the|property of the derivative in frequencies of the Fourier transform.
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Problem: Compute the Fourier transform of the function
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which|describes a harmonic oscillator using Fourier transforms

Problem: solve the|differential equation
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which|represents a forced harmonic oscillator or a LC circuit, using Fourier transforms.

Problem: solve the|differential equation
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.~ Additional properties of the Dirac delta

import numpy as np

1. Relationship between the Dirac delta and the Kronecker delta. We can see the inport matplotlib.pyplot as plt

similarity of the definition when we consider what it does to la sum and an integral:

x = np.linspace(-3,3,100)

0 N =.3*np;pi
4 |2,85.. =| 3 all the indexes vanish except for &= j cpsiton = 0.2
1.L P o dx = np.diff(x)[0]
Rod
in(IN .
filz) = % Sm(x ) fa(z) = %ﬁ fi(@) = %6 s

ajm $ (=) dx= /‘5‘3 all ¥ vanish except for X =%

f1 = np.sin(Nkx)/(np.pikx)
np.sum(flxdx)

g€

1.0218447934837154

So, we say the Dirac Delta is the continuous analog of the Kronecker delta.

2 = (1/np.pi)*epsilon/(epsilon**2 + x*x2)
np.sum(f2xdx)

2. Different limits of integration. In the notebook on the right, we see three 0.9580453308838972
) ; r % |
Penresentatl)ns Of t’he D]'Pa'c delta' /\‘- l# 5 :4.? When 8 or r -9 % 3 = 1/np.sqrt(epsilon*np.pi)*np.exp(-x**2/epsilon)

np.sum(f3*dx)

For all those| functions, we see (numerically) that 9.9999939999999953
plt.plot(x,f1,label="f_1")
0 plt.plot(x,f2, label="f_2")
L) dx =1 ) =1,2,3 et
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which justifies that in the general case § <% &b >0
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.~ Moreover, in the following case, we can write
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which|is the inverse one of the definitions of the Delta itself.

—
3. Dirac delta in several dimensions. We define an analogous distribution that goes to infinity at?’ro and zero everywhere else

with the integral in all space being one. In Cartesian coordinates, the integral definition can be written as
0
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But in other coordinate systems, one must be careful because of the Jacobian.

Problem: find the Dirac delta coordinate representation for (?" a) in 3D spherical \coordinates.
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stulate that the coordinate representation of the Delta is accompanied by factor functions
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Problem: find the Dirac delta representation of an infinitesimally thin spherical shell located at €= Yo

In this case, the Dirac delta does not represent a point, but a spherical shell. This means that the delta must not

depend on e and a spherical shell exists only at a given [ , but it covers all points in 8-and ﬂ ).
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Review problej: compute the Lmﬁce transform of the function

p &0 %
5 1@ + & {/_nw‘v =t ic

FE) =] ¢"€" dt = pws = =t % 3 =
A AR R o
4he Atod fon “," letta”. Now we vepest 7z times ontil t~ =1-
= pp-0n-g)---1 m‘!-P"St Pl s N
Ge e oo ) Jy 5'"'
Pl i
S

Review problem: get the Laplace transform of Gs¥ starting from the knowledge of the Laplace transform

Llsintl = =

We know that cosine is the derivative of sine. Then,

o FF)= St F (s
Plry) = cos t sF(s) —,ﬁ”o') = —2
e 4 e L (W S¢+1
(»; tl,\\ SN0 =0

Review problem: Solve the differential equation
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is called a Volterra|integral equation of kernel K. The unknown function is %CL’) (therefore it/s an integral equation).

Welcan solve this kind of equation with the Laplace transform. Consider the particular Volterra integral equation
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where the kernelis K (£) =t . =1 and S(#)=Sint . Solve this equation by Laplace transforms.
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Context: we define the sine Fourier transform for an odd function as

C - — o ” e
el Itz | = | dc L () sinlxy A is an ol forchTn
S Usty OF = w181
“d

Problem: compute the Fourier sine tranform for the function
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Context: Analogous to the sine Fourier transform of an odd function, we define the cosine Fourier transform of an even function

as %
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is the corresponding inverse transform. Notice that the Kernel and interval are identical in the direct and inverse cosine

tranforms. (By the way, this/is the case also for the inverse sine transform of the previous problem).
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