
Fourier transform 

 
Cauchy's principal value (CPV): for a function  the limiting value 

, if it exists, is called the Cauchy's principal value.

Heaviside's function: piecewise function ,   . There are 

different conventions for   ( ).

Distributions or generalized functions: they extend the concept of function such 
that certain derivatives or integrals exist despite the function not being continuous and infinitely 
differentiable. Distributions are often defined in terms of a limit involving classical functions.

Dirac delta: distribution  defined by    such that 

given a continuous function g,    .

The Dirac delta can be defined by using several representations. Here we review 
two of them:

- The Dirac delta is the derivative of the Heaviside function: 
. This can be shown by approximating the Heaviside 

function by continous functions where the 0 and the 1 are connected by a line within an  around 
. As  the line becomes more vertical and therefore the derivative (slope) becomes infinite at 

only one point (just like the Dirac delta).

- The Dirac delta can be defined as . Conceptually, one can think of the 

integral . Functions similar to  have a spike at  

and vanish for big t, similar to a Dirac delta.
- Properties:

• Scaling: For ,  because  (the 

absolute value is necessary to keep the integration limits).
• From the scaling property 

• Generalization with a function: , where the  are all the roots 

of . Example:  for .
• In n dimensions, .

• Distribution:  because . In general, 

 for .
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exp(i x t)
i t

L

−L

=
2 sin(Lt)

t
sin(t)/t t = 0

a ∈ ℝ∖{0} δ(a x) =
δ(x)
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δ(a x)d x = ∫
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δ(u)d x / |a | = 1/ |a |

⟹ δ(−x) = δ(x)

δ( f (x)) = ∑
k
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| f ′￼(xk) |

δ(x − xk) xk

f δ(a x − b) = |a |−1 δ(x − b /a) a , b ∈ ℝ, a ≠ 0
δ(a x) = |a |−n δ(x)

x δ(x) = 0 ∫
∞

−∞
x δ(x)f (x)d x = (0) ⋅ f (0) = 0

(x − a)nδ(x − a) = 0 n ∈ ℕ, a ∈ ℝ
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Fourier transform: simplified derivation: the expansion of a function in a Fourier series requires 
the function to be defined within an interval and be periodic. As a result, we obtain a sum (series) of 
harmonic functions with discrete amplitudes. In order to remove these constraints (namely, to use a 
non-periodic function and continuous amplitudes), we need to use a Fourier transform.

Suppose we take a periodic function . We build a Fourier series, but this 
time, let's define the angular frequency  (which implies , since  
because ). Substituting, we have

(the term inside the brackets are the coefficients ). Now, we do , which 
implies that the sum becomes an integral and the angular frequency becomes continuous:

The innermost integral (the one inside the brackets) is called the Fourier transform  of , 
and the outermost integral is called the inverse Fourier transform. There are different conventions 
on how to deal with the factor of : some authors distribute it equally between the two 
transforms as factors of , others use the factor of  only on the inverse Fourier 
transform. In this document, we take the factor only on the inverse transform.

Fourier transform: definition: for a function , the function  is 

called the Fourier transform of , and one can use for it the notation .
Interpretation: the Fourier transform gives out a complex function of the angular frequency. It 
originated from the coefficients of the Fourier series, so it can be interpreted as the (complex) 
amplitudes of the sum of (complex) harmonic functions  that describe . The fact that 
those functions are complex means that the Fourier transform also encodes information on the 
phase of those harmonic functions (think of Euler's formula ).

- Trivial example: the Fourier transform of  is 

. This means that in the case of a harmonic function in  (usually 
time space) we get a spike at  in  (usually the frequency space). Using exponential functions, we 
can build the Fourier transform of sines and cosines (sums of Dirac delta functions, some 
multiplied by ).

Inverse Fourier transform: for an image function , we define the function  with 
, as long as it exists for each , as the inverse Fourier transform of . In 

the case that  is Fourier-transformable and differentiable in portions and its transform is , then the 
inverse transform of  is

In practice, one does not compute directly the inverse transformation because the integrals 
typically become difficult, but instead one uses the properties of the Fourier transform described below 
to express  in terms of known transformations. 

Fourier transform: properties: Exercise: show all of them using the definition of Fourier transform
• Linearity: for all , if  and , then 

.
• Application: consider a real signal   (for example, the sound of 

a typical musical instrument, where the base frequency  is "louder" than the first harmonic 
). Given that , one can see that 

. This means that for a 

f (t) : [−T /2,T /2] → ℝ
ωk = 2πk /T Δω = 2π /T Δk = 1

k ∈ ℤ
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k=∞ [ Δω

2π ∫
T/2
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f (t)e−iωktd t] eiωkt

ck T → ∞ ⟹ Δω → 0
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d ω
2π [∫
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f (t)e−iωtd t] eiωt

F (ω) f (t)
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f : ℝ → ℂ F (ω) = CPV∫
∞

−∞
f (t)e−iωtd t

f ℱ{ f (t)} = F (ω)

eiωt f (t)

eiθ = cos θ + i sin θ

f (t) = eiω0t F (ω) = ∫
∞

−∞
ei(ω0−ω)td t

= 2π δ(ω0 − ω) = 2π δ(ω − ω0) t
ω0 ω
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F (ω) f̃ : ℝ → ℂ

f̃ (t) =
1

2π ∫
∞

−∞
eiωtF (ω)d ω t ∈ ℝ F

f (t) F
F

f̃ (t) =
f (t), if f is continuous
f (t+) + f (t−)

2 , if f is discontinuous

F (ω)

λ , μ ∈ ℂ F (ω) = ℱ{ f (t)} G (ω) = ℱ{g(t)}
ℱ{λ f (t) + μg(t)} = λ F (ω) + μG (ω)

f (t) = 3A cos(ω0t) + A cos([2ω0]t)
ω0

2ω0 ℱ{cos(ω0t)} = π [δ(ω − ω0) + δ(ω + ω0)]
F (ω) = 3Aπ [δ(ω − ω0) + δ(ω + ω0)] + Aπ [δ(ω − 2ω0) + δ(ω + 2ω0)]



given signal, the Fourier transform selects all the frequencies present in it (it gives out a 
complex spectrum).

• Conjugation: 

• Scaling:  for . Note that because of the properties of the Dirac 

delta, .

• Displacement in time: 
• Displacement in frequency:  for 
• Derivative with respect to time: 
• Derivative with respect to frequency: 
• Convolution theorem („Faltungsprodukt"): We define a convolution of  as

. The Fourier transform of a convolution is . 

Another way to state this is using the inverse Fourier transform: 
.

• Duality: if  is continuous in , . Example: we saw above that 
. Then, it's not surprising that .

• Symmetry: if the function  is even or odd, then  is also even or odd.
• Inversion: 

• Parseval's identity: . Exercise: prove this relation (hint: substitute 

one of the  by the inverse Fourier transform definition).

• General Parseval's relation: .

Fourier transform in n dimensions: the Fourier transform can be generalized to n dimensions. For 
this definition, we use a different normalization than in the rest of this document:
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1
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δ(ω /2 − ω0) = 2π ⋅ δ(ω − 2ω0)

ℱ{ f (t − a)} = e−iωaF (ω)
ℱ{eiω′￼t f (t)} = F (ω − ω′￼) ω′￼∈ ℝ

ℱ{ f ′￼(t)} = iωF (ω)
ℱ{t f (t)} = iF′￼(ω)

f, g

( f * g)(t) = ∫
∞
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f (t − τ)g(τ)dτ ℱ{ f * g} = F (ω)G (ω)
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∞
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f (t − τ)g(τ)dτ

f t ℱ{F (t)} = 2π f (−ω)
ℱ{eiω0t} = δ(ω − ω0) ℱ{δ(t − t0)} = e−iωt0

f F
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1
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 rect(t) = {0, | t | ≥ 1/2
1, | t | < 1/2

= H(t + 1/2) − H(t − 1/2)

sinc(ω /2) =
sin(ω /2)

ω /2

f (t)F (ω)

1/x

, xn n ∈ ℕ

1

, where sgn is 
the sign function
−iπ sgn(ω)

e−at2

f (t)

eiat

2a
a2 + ω2

e−at H(t) 2π δ(ω − a)

π
a

e−ω2/(4a) , where (n) 
means derivative
2π inδ(n)(ω)

2π δ(ω)

,  e−a|t| a ∈ ℝ, a > 0

F (ω)

f (r) =
1

(2π)n /2 ∫ dnk eik⋅rF (k)

F (k) =
1

(2π)n /2 ∫ dnx e−ik⋅r f (r)


