
Differential geometry 

Mathematical background: manifolds


Manifold : collection of points, smooth (meaning there are always more points between two given 
points), locally homeomorphic to  (a map can be built from any small section of  to a flat space).

• To probe whether we have a manifold, use open intervals: 

Notice that in a discontinuous (= non-smooth) function, there are open 
intervals in the vertical axis that correspond to (half-)closed intervals in 
the horizontal axis. In a manifold, we require smoothness. 

Chart (coordinate patch): because a manifold is locally homeomorphic to , we can define a 
coordinate patch or chart as a local map from an open "interval" on the manifold to an Euclidean 
(locally flat) space. A collection of charts is called an atlas.

Examples of manifolds:
• Trivial: , , , 
• Flat (Minkowski) spacetime:  (not equal to )

• Circle

• Spacetime around a compact object (neutron star, black hole) 
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This manifold cannot be covered with only one coordinate patch! 
This is why we must be careful when programming and never take  
but . The coordinate patch is usually taken as . 
A circle is locally smooth (similar to a straight line if we zoom in a lot).
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Mathematical background: vectors


Tangent space: One can define a tangent space of a 
manifold  at a point  ( ).

(Tangent) vectors: the elements  of the tangent space 
form a vector space. Because this is the tangent space, one 
can take as a basis as a tangent vector to the coordinate lines 
( ), that is,   (derivative generates a tangent space). 
Therefore, a vector  has a contravariant representation as 

.

Dual space, covectors: one can define a dual space  by 
taking the perpendicular direction(s) to the tangent space (in 
the figure on the right, which depicts a 2D manifold, this 
results in a straight line but in general it can have more 
dimensions). This also forms a vector space, and the basis can be taken to be the perpendicular lines to 
the coordinate lines ( ), that is, . The elements of  are usually called covectors or vectors 
represented in a covariant form, . 

Tensors, tensor product: the tensor product  builds of a compound space using the tangent and 
dual spaces. For example, the tensor of components  is built as . (Einstein summation 
convention). The rank of a tensor is how many indices it has (a scalar has rank zero, vectors and 
covectors have rank 1, and the tensor  of the example has rank 2). The tensor product builds higher-
ranked objects.

Metric: a way to define "distance" or interval  within two points of a manifold separated by a length 
 along each coordinate, can be provided by the metric, so that   ("generalization of 

Pythagoras's theorem"). The metric tensor is built as . 

Note that:
• One can convert between the covariant and contravariant representations of a vector  using 

the metric as  where 
• The previous point means that there is an inverse metric tensor with components  such 

that . Since they are the inverse of one another, .
• The dot product is defined as . This is more generally a tensor 

contraction and it is an operation that lowers the rank of a tensor.

• The bases are indeed the dual of one another: 
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Differential forms 
One-forms: the basis of the covariant representation of a vector  can be taken as a differential , 
so that we identify the objects  (and other Greek letters) and call them a one-form.

Antisymmetric tensors: a tensor for which  is said to be antisymmetric. We can build an 
antisymmetric tensor of rank 2 from any tensor of the same rank by building the expression 

.

Differential p-forms and the wedge product: instead of building an antisymmetric tensor via its 
components, we can also build an object called a p-form, which is an antisymmetric tensor of covariant 
rank p. To indicate their antisymmetry, we define the wedge product of two differential forms  as 
satisfying the property . Then, another way of building the basis for an antisymmetric 
tensor of rank 2 is by taking the basis  and instead building .

Vector space of differential forms: consider a vector field L of dimension n over a field (Körper) . 
Then, a vector in this space can be written as . The wedge product creates a product of 

the vector spaces, such that . A p-form generated by the wedge product is then an element 
of the space denoted by , that is, , where , 

. The wedge product generates a Grassman algebra.

Hodge star: given a p-form in a vector field of dimension n, it forms a (n-p)-form (complementary form 
built by the one-forms that are not in the original p-form). Careful: a) the wedge products are performed 
in the order of the coordinates (like the cross product) otherwise there should be a minus sign, and b) 
an extra minus sign can come from the metric (in Minkowski spacetime, this is the case if the form to 
be "hodged" contains ).

Examples in Euclidean space: , , .
Examples in Minkowski spacetime: , .

Exterior derivative: Since we are using a differential as a one-form, we notice that the the total 
differential of a function  in , which we know is , takes a scalar 
function (i.e., a 0-form) and creates with it a 1 form. This operation then has the following properties:

•
• , if  is a scalar and  is a p-form
•
• For all forms , .
• In general, the exterior derivative is a map .

Integrals of p-forms: the integral over a p-form  on the manifold  is defined as 
, where  and U is a region of  with a chart where 

the coordinates  are defined. Using differential forms, the Stokes theorem becomes very simply 
.
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