Problem: consider the differential equation
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subject to the boundary conditions  Y[(0) =9 , Y CTT) =TT Solve this equation by the Green function.

Solution: The Green function satisfies the differential equation

-9

\
o

G"(xt) ¥ & (xd

We|start by solving the homa g‘eieous differential equation
and applying the boundary conditions to each solution
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We/form the |Green function
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With this, we can compute the solution for our particular source function.

Note: we have t0 be very careful in selecting which criterion lof the Green [function to integrate in t!
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André Oliva
Ejercicios de funciones de Green
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Preblesn 4

Problem: neutron diffusion in a nuclear reactor (or radiation transport in a star) can be studied as a diffusion problem. Let's
consider the steady state diffusion equation. It can be shown that one can express it as
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where / is the number density of thermal neutrons and S is the "source density" of neutrons in a reactor.
a) Consider the case where the variables only depend on z in Cartesian coordinates. Write the Green function diff. equation.
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b) Consider the case where the variables only depend on r in spherical coordinates. Write the Green function diff. equation and
show that using the transformation G=r¢& one can transform the differential operator of the eqn to have the same form as the
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Given info: one can transform the Green function from a Cartesian problem with ! \ v 2400
into the Green function for a problem in spherical coordinates with the boundary condition G(_(‘ v ) -0 l

using the expression
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¢) Find the Green function for the Cartesian case, i.e, the number density of thermal neutrons when the source is a plane located
at Z=72"' with vanishing boundaries at infinity.
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d) Consider the case of a source plane located at the origin. Use the given transformation to find the Green function of a point
source of thermal neutrons located at r’;o . Hint: the radial coordinate is always ¢ O -
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e) Consider a plane source located at Z=Z : and a boundary condition

Verify that the Green functlon \

Giz,2') = Gp(z-2") —Gp (z+7Z)
Wwhere Gp\ is the Green function for vanishing boundaries found in (¢), satisfies the new boundary condition.
This is called the methdod of images. Hint: write the Green function in terms of absolute values.
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ga‘om : Careful: here, we use the grlterlon that
applies when integrating # , not % !
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