
Fourier series 

Field (Körper, cuerpo): a set  is a field when an addition  and 
multiplication  can be defined in such a way that both operations are associative, 
commutative and there are neuter and inverse elements. (Examples: ). Don't confuse this 
definition of a "field" with a scalar or vector field. In this document,  is the set .

Function: a function f from a set A to a set B is a correspondence such that for each element  
there is exactly one corresponding element , . For example, A and B can be , or . 
Example of a function definition: .

Comment: We have to be careful in defining the domain of a function; also with programming 
(we must tell the compiler whether the arguments are real or complex, and the function return 
is real or complex). Example of the function  in Fortran:

function f(x) 
	 real x 
	 complex f 
	 f = (0,1) + x 
end function

Vector space: a set  is a vector space over a field  if there is an addition  
and a scalar multiplication . The scalar multiplication should satisfy: a) 

; b) ; c) ; d) , for all  and .
Comment: the definition of a vector space does not define what a vector is. Several 
mathematical objects over a given field can be behave as a vector (not only an "arrow" linking 
two points in physical space is a vector). Polynomials and functions can also form vector spaces 
(see below), as long as they satisfy the properties of a vector space.

Polynomial: a real polynomial is a function  of the form 

.  are the coefficients of the polynomial.

Linear independence: The vectors are linearly independent when the equation  
only has the trivial solution . The maximum number of linearly independent vectors is 
called the dimension of the vector space.

Basis and coordinates: there are linearly independent vectors  for which each vector 
 can be written as a linear combination of basis vectors: . There is always a bijective 

transformation between two given bases. The  are the coordinates of the vector, usually written as a 
column vector (or transposed row vector to save space). Example: polynomials  can form a vector 
space; for the polynomial , the coordinates in the basis  are , but in 
the basis , they are .

Comment: continuing with the previous example, we see that for the set (sequence) of linearly-
independent polynomials  (until infinity), we obtain a vector space (of 
functions) of infinite dimensions.

𝕂 𝕂 × 𝕂 → 𝕂, (x , y) → x + y
𝕂 × 𝕂 → 𝕂, (x , y) → x y

ℝ, ℚ, ℂ
ℕ0 ℕ ∪ {0}

x ∈ A
y ∈ B y = f (x) ℝ ℝn ℂ

f : ℝ → ℝ, f (x) = x2

f : ℝ → ℂ, f (x) = i + x

V 𝕂 V × V → V : (x , y) → x + y
𝕂 × V : (λ , x) → λ x

λ(x + y) = λ x + λy (λ + μ)x = λ x + μ x (λμ)x = λ(μ x) 1x = x λ , μ ∈ 𝕂 x , y ∈ V

f : ℝ → ℝ

f (x) = a0 + a1x + ⋯ + anxn =
n

∑
k=0

ak xk ak ∈ ℝ

ψ1, ψ2, . . . ∑ cnψn = 0
c1 = c2 = ⋯ = 0

{e1, e2, . . . } ⊂ V
v ∈ V v = ∑i xiei

xi
f (X )

f (X ) = 1 + 2X + 3X2 {1,X , X2} (1,2,3)T

{1,1 + X ,1 + X + X2} (−1, − 1,3)T

{1,X , X2, . . . , Xn, . . . }
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Sequence: it is a function  (real sequence) or  (complex sequence), such that one 
obtains the set  for . Some sequences converge to a limit value  for 

.

Series: one can do a partial sum of the elements of a sequence (in numpy, for an array: 
np.cumsum() ):

the last element of the partial sum (the sum of the all the elements of the sequence up to infinity) is the 
series. Some series converge to a given value (i.e., the last element of the partial sum  for a real 
series).

Periodic function: a function  is periodic with period  if  for all . 
Examples: ,  are periodic functions with period . The function  is -periodic for 

, .
How to change the period: if  has period ,  has period . Exercise: show 
this! (hint: use the definition of periodic function).

Inner product of two periodic functions: , given functions  

with period  and a normalization factor . The bar means complex conjugation. Similar to other 
vector fields (like forces or velocities), two functions can be orthogonal when their scalar product is 

zero, and orthonormal if . One can define the normalization factor  if needed 

using the orthonormalization condition.

Series expansion of a function: one can develop a function  into a series (i.e., set the function as 
the limit value to which the series must converge) of a set of orthonormal periodic functions  
( ) that form the orthonormal basis of a vector space:

 .

The limit of the series can be, e.g., from  to , or from  to . The coefficients 
 can be found using the inner product (multiplying from the right by  with a 

different index ):
   (  is the Kronecker delta).

.

Real Fourier series in cosines and sines: one can show (exercise!) that the set 
 forms an orthonormal basis of a vector space of periodic 

functions with period  within the interval  and with a normalization factor . Then, one 
can expand a function  as

  with 

The coefficients  can be then computed as
,  , .

a : ℕ0 → ℝ a : ℕ0 → ℂ
{a0, a1, . . . , an, . . . } n ∈ ℕ0 a∞ ∈ ℝ

lim
n→∞

an = a∞

{a0, a1, a2, ⋯, an , ⋯, a∞ }

{a0, a0 + a1, a0 + a1 + a2, ⋯,
n

∑
k=0

ak , ⋯,
∞

∑
k=0

ak}

∈ ℝ

f : ℝ → ℂ T > 0 f (x + T ) = f (x) x ∈ ℝ
sin(x) eix 2π sin(2πk x /T ) T

T > 0 k ∈ ℤ
f (x) T1 g(x) = f (T1x /T2) T2

⟨ f, g⟩ = K∫
T/2

−T/2
f (x)ḡ(x)d x f, g : ℝ → ℂ

T > 0 K

⟨ f, g⟩ = {1 if f = g
0 otherwise

K

f (x)
{gk(x)}

k ∈ ℤ
f (x) = ∑

k

ckgk(x)

k = − ∞ ∞ k = 0 ∞
ck ∈ ℂ gℓ(x)

ℓ ∈ ℤ
⟨ f (x), gℓ(x)⟩ = ∑

k

ck⟨gk(x), gℓ(x)⟩ = ∑
k

ckδℓk δℓk

⟹ cℓ = ⟨ f (x), gℓ(x)⟩

{1/ 2, cos(x), cos(2x), …, sin(x), sin(2x), …}
2π [−π , π [ K = 1/π
f : ℝ → ℝ

f (x) =
a0

2
+

∞

∑
k=1

ak cos(k x) + bk sin(k x) k ∈ ℕ

ak, bk ∈ ℝ
a0 = ⟨ f,1/ 2⟩ ak = ⟨ f, cos(k x)⟩ bk = ⟨ f, sin(k x)⟩



Real Fourier series for an arbitrary period: In general, for a periodic function  
with period , the Fourier series defined using the basis functions  with 

 is

The coefficients  can be then computed as
  ( ) ,   ( )

with the normalization constant .
- Simple theory exercise: shift the function definition from  to .

Complex Fourier series: The set of functions    (each , ) forms an 
orthonormal basis of a vector space with a period  and a normalization factor . We define the 
Fourier series expansion of a function  of period  as

and then, the coefficients  are computed as    

(remember to do the complex conjugate of the expontential!).
- Comment: for a real function , the coefficients  can still be complex, but 
their product with the basis functions should yield a real number in the end.
- Simple exercise: What is the relation between the coefficients of the Fourier series of  and 
the Fourier series of the shifted function   ( ) ?

Relations between a real and complex Fourier series: for a function  of period , we 
can expand in both bases:

but this time,  in general. If the  are given:
   for .

If  are given:
 for .

Handling of discontinuities: consider  but with points  within the 
domain where  is discontinuous. Then, the Fourier expansion  

can be related as  if  is continuous in , but if it is not, then for each  ( ), 

  (where  and  are the values from the left and right sides of the 
discontinuity) 
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f : [−T /2,T /2[ → ℝ
T {sin(2πk x /T ), cos(2πk x /T )}

k ∈ ℕ

f (x) =
a0

2
+

∞

∑
k=1

ak cos(2πk x /T ) + bk sin(2πk x /T )

ak, bk ∈ ℝ
ak = ⟨ f, cos(2πk x /T )⟩ k ∈ ℕ0 bk = ⟨ f, sin(2πk x /T )⟩ k ∈ ℕ

K = 2/T
[−T /2,T /2[ [0,T [

{e2π ik x /T} [−T /2,T /2[ → ℂ k ∈ ℤ
T K = 1/T

f : [−T /2,T /2[ → ℂ T

f (x) =
∞

∑
k=−∞

cke2π ik x /T

ck ∈ ℂ ck = ⟨ f (x), e2π ik x /T⟩ =
1
T ∫

T/2

−T/2
f (x)e−2π ik x /T d x

f : [−T /2,T /2[ → ℝ ck

f (x)
f (x + a) a ∈ ℝ

f : ℝ → ℂ T

f (x) =
a0

2
+

∞

∑
k=1

ak cos(2πk x /T ) + bk sin(2πk x /T ) =
∞

∑
k=−∞

cke2π ik x /T

ak, bk, ck ∈ ℂ ck, k ∈ ℤ
a0 = 2c0, ak = ck + c−k, bk = i(ck − c−k) k ∈ ℕ

a0, ak, bk, k ∈ ℕ

c0 = a0 /2, ck =
1
2

(ak − ibk), c−k =
1
2

(ak + ibk) k ∈ ℕ

f : [−T /2,T /2[ → ℝ α1, . . . , αℓ

f fF(x) =
a0

2
+

∞

∑
k=1

ak cos(k x) + bk sin(k x)

f (x) = fF(x) f x x = αk k = 1,...,ℓ

fF(αk) =
f (α−

k ) + f (α+
k )

2
α+

k α−
k


