Sturm-Liouville problem

Differential equations and eigenvalue problems: given a second-order differential operator $\hat{\mathcal{L}}$, a function $\psi(x) : \mathbb{R} \to \mathbb{C}$ and $\lambda \in \mathbb{C}$, the differential equation $\hat{\mathcal{L}}\psi(x) = \lambda \psi(x)$

subject to boundary conditions, defines an eigenvalue problem (a problem such that a scalar λ has the same effect on ψ than an operator $\hat{\mathcal{L}}$). Compared to linear algebra of matrices, the differential operator $\hat{\mathcal{L}}$ is equivalent to a matrix ad the functions $\psi(x)$ are equivalent to eigenvectors (here called eigenfunctions). The functions $\psi(x)$ subject to the boundary conditions form a Hilbert space. The operator $\hat{\mathcal{L}}$ has a general form

$$\hat{\mathcal{L}} = p_0(x) \frac{d^2}{dx^2} + p_1(x) \frac{d}{dx} + p_2(x).$$

where we limit ourselves to the case $p_i(x)$: $\mathbb{R} \to \mathbb{R}$, $j \in \{0,1,2\}$.

Example: the spatial part of a standing wave must satisfy the differential equation $\frac{d^2\psi}{dx^2} + k^2\psi = 0 \text{ subject to the boundary conditions } \psi(0) = \psi(l) = 0. \text{ Defining } \hat{\mathcal{L}} = \frac{d^2}{dx^2}, \text{ one has } \hat{\mathcal{L}}\psi = -k^2\psi. \text{ The eigenvalues are then } \lambda = -k^2. \text{ The solution to this equation are the eigenfunctions } \psi_n(x) = A \sin(n\pi x/l), \text{ with } k^2 = n^2\pi^2/l^2, n \in \mathbb{N}. \text{ We can show that those functions are orthogonal, i.e., } \langle \psi_n, \psi_m \rangle = 0 \iff n \neq m \text{ within the interval } [0,l].$

Hermitian adjoint operator: consider the inner product of two functions, $\langle \hat{\mathcal{D}}f, g \rangle$, where $\hat{\mathcal{D}}$ is a differential operator acting on g. An adjoint operator $\hat{\mathcal{D}}^{\dagger}$ is defined such that $\langle \hat{\mathcal{D}}f, g \rangle = \langle f, \hat{\mathcal{D}}^{\dagger}g \rangle$ + extra terms due to the boundaries. If those extra terms are zero, then the operator is called *Hermitian adjoint*. (Remember that the inner product has the complex conjugate defined, as well as an interval and a weight!)

Self-adjoint operator: an operator for which $\hat{\mathcal{D}}^{\dagger} = \hat{\mathcal{D}}$. A Hermitian self-adjoint operator is simply called Hermitian. It can be shown that $\hat{\mathcal{L}}$ is self-adjoint if $p_0'(x) = p_1(x)$. This means that one can write $\hat{\mathcal{L}} = \frac{d}{dx} \left[p_0(x) \frac{d}{dx} \right] + p_2(x)$.

Orthogonality of the eigenfunctions (case without weight function): consider a Hermitian operator $\hat{\mathcal{L}}$ that satisfies $\hat{\mathcal{L}}u = \lambda_u u$, $\hat{\mathcal{L}}v = \lambda_v v$, where $u, v : \mathbb{R} \to \mathbb{C}$; u(x), v(x) and no weight. Then, $\int_a^b \bar{v} \hat{\mathcal{L}}u dx = \int_a^b [\bar{v}(p_0 u')' + \bar{v}p_2 u] dx$ $= (\text{int. by parts}) = [\bar{v}p_0 u']_a^b + \int_a^b [-\bar{v}'p_0 u' + \bar{v}p_2 u] dx = (\text{another int. by parts}) = \\ \int_a^b \bar{v} \hat{\mathcal{L}}u = [\bar{v}p_0 u' - \bar{v}'p_0 u]_a^b + \int_a^b [(p_0 \bar{v}')' u + \bar{v}p_2 u] dx = [\bar{v}p_0 u' - \bar{v}'p_0 u]_a^b + \int_a^b \overline{(\hat{\mathcal{L}}v)}u dx$. The boundary terms must vanish if $\hat{\mathcal{L}}$ is Hermitian, by definition. We see that if u, v are eigenfunctions, we can write $(\lambda_u - \lambda_v) \int_a^b \bar{v}u dx = [p_0(\bar{v}u' - \bar{v}'u)]_a^b$. For $u \neq v$ and in general $\lambda_u \neq \lambda_v$, and if the boundary terms vanish, then $\langle v, u \rangle = 0$ (i.e, the eigenfunctions must be orthogonal).

Orthogonality of the eigenfunctions (with weight function): if the operator $\hat{\mathcal{L}}_{nsa}$ is not self-adjoint (nsa), then there can be a function w(x) (the weight function) such that, when $w(x)\hat{\mathcal{L}}_{nsa}\psi(x)=w(x)\lambda\psi(x)$, it makes the operator self-adjoint (sa) (i.e., $\hat{\mathcal{L}}_{sa}=w\hat{\mathcal{L}}_{nsa}$). One can

show that such a function is $w(x) = p_0^{-1}(x) \exp \left| \int \frac{p_1(x)}{p_0(x)} dx \right|$. The equation becomes $(p(x)\psi'_n(x))' = -(s(x) + \lambda_n w(x))\psi_n(x)$ and after the same procedure as the case without the weight function, we find $p(x)[\psi_m(x)\psi_n'(x) - \psi_m'(x)\psi_n(x)]_a^b = (\lambda_m - \lambda_n) \int_a^b dx \, w(x) \, \psi_{\lambda_n}(x) \, \psi_{\lambda_m}(x)$, meaning that the inner product requires the weight function for the functions to be considered orthogonal.

Sturm-Liouville equation: The second-order linear ordinary differential equation $\hat{\mathcal{L}}[y(x)] = -\lambda w(x)y(x)$ with the Hermitian operator $\hat{\mathcal{L}} := \frac{d}{dx} \left[p(x) \frac{d}{dx} \right] - s(x)$, subject to suitable

boundary conditions, is called a *Sturm-Liouville problem*. (Note: from now on, $\lambda \rightarrow -\lambda$)

Comment: the boundary conditions must be such that $[p(\bar{v}u' - \bar{v}'u)]_a^b$ for two eigenfunctions. There are several possibilities. For real eigenfunctions, here are some examples:

- Dirichlet boundary conditions: u(a) = u(b) = v(a) = v(b) = 0
- Neumann boundary conditions: u'(a) = u'(b) = v'(a) = v'(b) = 0
- Periodic boundary conditions: p(a) = p(b); v(a) = v(b); v'(a) = v'(b)
- Other combinations of the eigenfunctions or their derivatives such that the term in the parenthesis is zero at the boundaries
- Making p(x) to be zero at the boundaries.

Series expansion of a function: one can develop a given function f(x) into a series (i.e., set the function as the limit value to which the series must converge) of a set of (orthogonal) eigenfunctions $\{g_k(x)\}\ (k\in\mathbb{Z})$ that form the basis of a vector space: $f(x)=\sum_k c_k g_k(x).$

$$f(x) = \sum_{k} c_k g_k(x).$$

The limit of the series can be, e.g., from $k = -\infty$ to ∞ , or from k = 0 to ∞ . If the eigenfunctions are not orthonormal, one can find the normalization constant N_k as $N_k^2 = \langle g_k, g_k \rangle$. The coefficients $c_k \in \mathbb{C}$ can be found using the inner product (multiplying from

the right by
$$g_{\ell}(x)$$
 with a different index $\ell \in \mathbb{Z}$:
$$\langle f(x), g_{\ell}(x) \rangle = \sum_{k} c_{k} \langle g_{k}(x), g_{\ell}(x) \rangle = \sum_{k} c_{k} N_{k}^{2} \delta_{\ell k} \quad (\delta_{\ell k} \text{ is the Kronecker delta}).$$

$$\implies c_{\ell} = \langle f(x), g_{\ell}(x) \rangle / N_{\ell}^{2}.$$

Classical orthogonal polynomials: there are some orthogonal polynomials $C_n(x)$ that satisfy the Sturm-Liouville equation and are called *classical orthogonal polynomials*. Remember: there are functions that satisfy the Sturm-Liouville equation and that are not polynomials.

Generalized Rodrigues's formula: $C_n(x) = \frac{K_n}{w} \frac{d^n}{dx^n} [wp_0^n]$. Where: $p_0(x) : \mathbb{R} \to \mathbb{R}$ is a polynomial of degree ≤ 2 with only real roots; $w(x) : \mathbb{R} \to \mathbb{R}$ strictly positive function ("weight function"), integrable within [a, b] and such that w(a)s(a) = 0 = w(b)s(b); $C_1(x)$ is a first-degree polynomial in x. The generalized Rodrigues's formula generates classical orthogonal polynomials in the interval [a, b]. The constant K_n depends on the standard normalization of the polynomials (chosen so for historical reasons).

Comment: It can be proven that the Rodrigues's formula generates polynomials that satisfy the differential equation $(wp_0C'_n)' = w\lambda_nC_n$, i.e., they satisfy a Sturm-Liouville problem.

Generating function: it is also possible to generate all orthogonal polynomials that satisfy a given Sturm-Liouville problem by repeated differentiations of a *generating function* g(x,t) that can be expanded as $g(x,t) = \sum_{n=0}^{\infty} a_n t^n C_n(x)$ with some constants a_n . Note that the *nth* derivative w.r.t. t brings out the polynomials and changes of variables to the index in the series create terms like C_{n-1} or C_{n+1} . This means that derivatives of the generating function can create recurrence relations.

Schläfli representation: in order to extend the definition of orthogonal polynomials to the complex plane, we start by the complex Rodrigues's formula, $C_n(z) = \frac{K_n}{w(z)} \frac{d^n}{dz^n} [w(z)(p_0(z))^n],$ $n \in \mathbb{N}_0, z \in \mathbb{Z} \iff C_n(z) : \mathbb{Z} \to \mathbb{Z}$ because $C_n(z)$ is a polynomial). Using Cauchy's integral formula $\oint_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{n+1}} dz = 2\pi i f^{(n)}(z_0)/n! \text{ to integrate } n \text{ times, we find}$ $C_n(z) = \frac{K_n}{w(z)} \frac{n!}{2\pi i} \oint_C \frac{w(y)[p_0(y)]^n}{(y-z)^{n+1}} dy, \text{ where } C \text{ encloses the point } z, y \in \mathbb{C} \text{ and the numerator inside}$ the integral is analytic on and within C.

Example: contrary to the Rodrigues's formula, the Schläfli representation doesn't need $n \in \mathbb{N}_0$ to make sense. Therefore, one can use the Schläfli representation for generalizing a polynomial to a function with non-integer values of n. As a concrete example, consider the Legendre polynomials.

Substituting from the table, we find $P_{\nu}(z) = \frac{1}{2\pi i} \oint_{C}^{S} \frac{1}{2^{\nu}} \frac{(t^2-1)^{\nu}}{(t-z)^{\nu+1}} dt$. The contour is in the figure on the right. Generalizing for $\nu \in \mathbb{R}$ and using the

contour is in the figure on the right. Generalizing for $\nu \in \mathbb{R}$ and using the change of variable $t=z+\sqrt{z^2-1}e^{i\phi}$, it is possible to show that $P_{-1/2}(x)$ can

be written as an elliptical integral $\frac{2}{\pi}K(\sqrt{(1-x)/2})$, which is another kind of special function.

Re(t)

Integral representations are useful for finding relations (sometimes unexpected) between special functions.

Schläfli integral for non-polynomials and its relation to generating functions: the Bessel functions of the first kind are not polynomials, but they have a generating function $g(x,t) = e^{(x/2)(t-1/t)} = \sum J_n(x)t^n$ (see table). If we apply the residue theorem to an integral

containing the generating function, we get $\oint_C \frac{e^{(x/2)(t-1/t)}}{t^{n+1}} dt = \oint_C \sum_m J_m(x) t^{m-n-1} = 2\pi i J_n(x)$ with C encircling t = 0. With the change of variable $t = e^{i\theta} \implies e^{(x/2)(t-1/t)} = e^{ix\sin\theta}$, and C

being the unit circle, we find $2\pi i J_n(x) = \int_0^{2\pi} e^{i(x\sin\theta - n\theta)} i d\theta$ in general for $x \in \mathbb{C}$ or

 $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta - n\theta) d\theta$ for $x \in \mathbb{R}$. In this case, the generating function was used to get (a) Schläfli representation, but we can also derive generating functions (for example, for polynomials) using the/a Schläfli representation.

References

- Dennery, P., Krzywicki, A. (1967) Mathematics for Physicists. Dover publications.
- Lang, C.B., Pucker, N. (2016) Mathematische Methoden in der Physik (3.ª ed., en alemán). Springer.
- Hassani, S. (1999) Mathematical Physics. Springer.
- Korn, G.A.; Korn, T.M. (1968) Mathematical handbook for scientists and engineers. Dover publications.
- Boas, M. (1983) Mathematical Methods in the Physical Sciences. Wiley.
- Weber & Arfken (2003) Essential Mathematical Methods for Physicists. Academic Press.

Last update: 2 September 2025

Some (definitely not all!) orthogonal polynomials and eigenfunctions of the Sturm-Liouville problem

Polynomial/ Function	Interval	w(x)	p(x) (nb 1)	s(x)	λ	Standard normalization N^2	Generating function (nb 2)	K_n for Rodrigues's formula
Harmonic $\{e^{inx}\}$	$[-\pi,\pi]$	1	1	0	n^2	π -		not a polynomial
Legendre $P_l(x)$	[-1,1]	1	$1-x^2$	0	l(l+1)	$\frac{2}{2l+1}$	$(1 - 2xt + t^2)^{-1/2}$	$\frac{1}{2^l l!} \cdot (-1)^l \text{ (nb 3)}$
Associated Legendre $P_l^m(x)$	[-1,1]	1	$1 - x^2$	$\frac{m^2}{1-x^2}$	l(l+1)	$\frac{2}{2l+1} \cdot \frac{(l+m)!}{(l-m)!}$	Modifications needed $P_l^m(x) = (-1)^n$. Main definition: $\frac{d^m}{dx^m}P_l(x)$
Bessel of the first kind $J_p(x)$	[0,1]	х	х	$-\frac{p^2}{x}$	1 (nb 4)	$\int_0^1 [J_p(ax)]^2 x dx$ $= \frac{1}{2} [J'_p(a)]^2$ (boundary condition $J_p(a) = 0 \text{ (nb 5)}$	$e^{(x/2)(t-1/t)}$	not a polynomial
Laguerre $L_n(x)$	[0,∞]	e^{-x}	xe^{-x}	0	n	1	$\frac{e^{-xt/(1-t)}}{1-t}, a_n = 1/n!$	$\frac{1}{n!}$
Associated Laguerre $L_n^k(x)$ (nb 6)	[0,∞]	$x^k e^{-x}$	$x^{k+1}e^{-x}$	0	- <i>n</i>	$\frac{(n+k)!}{n!}$	$\frac{e^{-xt/(1-t)}}{(1-t)^{k+1}}, a_n = 1/n!$	$\frac{1}{n!}$
Hermite $H_n(x)$ (nb 7)	$[-\infty,\infty]$	e^{-x^2}	e^{-x^2}	0	2 <i>n</i>	$2^n\pi^{1/2}n!$	e^{-t^2+2tx} , $a_n = 1/n!$	$(-1)^n$
Chebyshev polynomials $T_n(x)$	[-1,1]	$\frac{1}{\sqrt{1-x^2}}$	$(1-x^2)^{\frac{1}{2}}$	0	$-n^2$	$\pi/2$, if $n \neq 0$; π , if $n = 0$	$\frac{1-tx}{1-2tx+t^2}$	$\frac{(-2)^n n!}{(2n)!}$

Checked against: Weber & Arfken (2003) Essential Mathematical Methods for Physicists, Academic Press. Chapters 9-13. The Chebyshev polynomials are taken from Korn & Korn (1968) Mathematical handbook..., table 21.7-1. However: please be careful and always check.

- (nb I) Warning, when computing the Rodrigues's formula: $p_0(x) = p(x)/w(x)$.
- (nb 2) Here, $a_n = 1$ in the respective series expansion, unless otherwise specified. Warning: generating functions are not unique.
- (nb 3) In most books, they take in Rodrigues's formula $p_0(x) \to -p_0(x)$ and therefore they show no factor $(-1)^l$ in K_l . However, they only do it in the Rodrigues's formula and not in the differential equation, so this is why we prefer to modify the K_l and introduce the minus sign there instead.
- minus sign there instead.

 (nb 4) It is customary to make the change of variables $x = k\rho \implies \frac{d}{dx} = \frac{1}{k} \frac{d}{d\rho}$. After this change of variables, $\lambda = k^2$ and the interval is rescaled to $[0, \alpha]$ where the boundary condition is now $J_p(k\alpha) = 0$. Then, the normalization changes to $\int_0^\alpha \rho [J_p(k\rho)]^2 d\rho = \frac{\alpha^2}{2} \left[J_p'(c_{pm})\right]^2 \text{ where } c_{pm} \text{ are the zeros of the Bessel function.}$ (nb 5) See also nb 4. Because of recurrence formulae, one can express the normalization in other ways, for example, in terms of $J_p'(k_{\mu\nu}) = -J_{\nu+1}(k_{\nu\mu})$. The orthogonalization is achieved by considering Dirichlet boundary conditions, i.e., $J_\nu(k\alpha) = 0$. The Bessel function is oscillatory so one needs to choose a zero at the right distance at to exist the houndary conditions.
- Bessel function is oscillatory, so one needs to choose a zero at the right distance a to satisfy the boundary condition.
- (nb 6) Similarly to the case of the associated Legendre polynomials, the Associated Laguerre polynomials are defined in terms of a derivative of the Laguerre polynomials, namely, $L_n^k(x) = (-1)^k \frac{d^k}{dx^k} L_{k+n}(x)$. (nb 7) There is an alternative way of defining the Hermite polynomials and its differential equation. Here we take the "Physicist Hermite"
- polynomials".

Generalized Bessel ODE

The ODE
$$y'' + \frac{1 - 2a}{x}y' + \left[(bcx^{c-1})^2 + \frac{a^2 - p^2c^2}{x^2} \right] y = 0$$

The ODE $y'' + \frac{1-2a}{x}y' + \left[(bcx^{c-1})^2 + \frac{a^2-p^2c^2}{x^2}\right]y = 0$ with $a,b,c,p \in \mathbb{C}$ has the solution $y(x) = x^aZ_p(bx^c)$, where Z_p is a combination of Bessel $[J_p(x)]$ and Neumann $[Y_p(x) = (\cos(\pi p)J_p(x) - J_{-p}(x))/\sin(\pi p)]$ functions (multiplied by constants).

Equation	Solutions	a	Ь	С	p
Bessel	$J_p(x), Y_p(x)$ $H_p^{(1,2)} = J_p(x) \pm i Y_p(x)$	0	1	1	p
Bessel (rescaled)	$J_p(k\rho), Y_p(k\rho), H_p(k\rho)$	0	k	1	p
Modified Bessel	$I_p(x) = i^{-p} J_p(i x) K_p(x) = \frac{\pi}{2} i^{p+1} H_p^{(1)}(i x)$	0	i	1	p
Spherical Bessel	$j_n(x) = \sqrt{\frac{\pi}{2x}} J_{(2n+1)/2}(x)$ $y_n(x) = \sqrt{\frac{\pi}{2x}} Y_{(2n+1)/2}(x)$ $h_n^{(1,2)} = j_n(x) \pm i y_n(x)$	-1/2	1	1	$n+\frac{1}{2}, n \in \mathbb{Z}$
Ber, bei, ker, kei functions	$J_0(i^{3/2}x) = \operatorname{ber} x + i \operatorname{bei} x$ $K_0(i^{3/2}x) = \operatorname{ker} x + i \operatorname{kei} x$	0	i ^{3/2}	1	0