
Differential equations and eigenvalue problems: given a second-order differential operator , 
a function  and , the differential equation

subject to boundary conditions, defines an eigenvalue problem (a problem such that a scalar  has the 
same effect on  than an operator ). Compared to linear algebra of matrices, the differential 
operator  is equivalent to a matrix ad the functions  are equivalent to eigenvectors (here called 
eigenfunctions). The functions  subject to the boundary conditions form a Hilbert space. The 
operator  has a general form

.
where we limit ourselves to the case .

Example: the spatial part of a standing wave must satisfy the differential equation 

 subject to the boundary conditions . Defining , one 
has . The eigenvalues are then . The solution to this equation are the 
eigenfunctions , with , . We can show that those 
functions are orthogonal, i.e.,   within the interval .

Hermitian adjoint operator: consider the inner product of two functions, , where  is a 
differential operator acting on g. An adjoint operator  is defined such that  + 
extra terms due to the boundaries. If those extra terms are zero, then the operator is called Hermitian 
adjoint. (Remember that the inner product has the complex conjugate defined, as well as an interval 
and a weight!)

Self-adjoint operator: an operator for which . A Hermitian self-adjoint operator is simply 
called Hermitian. It can be shown that  is self-adjoint if . This means that one can 

write .

Orthogonality of the eigenfunctions (case without weight function): consider a Hermitian 
operator  that satisfies , , where  and no weight. Then, 

  

= (int. by parts)  = (another int. by parts) =

 . The boundary 

terms must vanish if  is Hermitian, by definition. We see that if  are eigenfunctions, we can 

write . For  and in general , and if the boundary terms 

vanish, then  (i.e, the eigenfunctions must be orthogonal).

Orthogonality of the eigenfunctions (with weight function): if the operator  is not self-
adjoint (nsa), then there can be a function  (the weight function) such that, when 

, it makes the operator self-adjoint (sa) (i.e., ). One can 
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show that such a function is . The equation becomes 

 and after the same procedure as the case without the weight 

function, we find   , meaning that 

the inner product requires the weight function for the functions to be considered orthogonal.

Sturm-Liouville equation: The second-order linear ordinary differential equation 

 with the Hermitian operator , subject to suitable 

boundary conditions, is called a Sturm-Liouville problem. (Note: from now on, )
Comment: the boundary conditions must be such that  for two 
eigenfunctions. There are several possibilities. For real eigenfunctions, here are some 
examples:
• Dirichlet boundary conditions: 
• Neumann boundary conditions: 
• Periodic boundary conditions: 
• Other combinations of the eigenfunctions or their derivatives such that the term in the 

parenthesis is zero at the boundaries
• Making  to be zero at the boundaries. 

Series expansion of a function: one can develop a given function  into a series (i.e., set the 
function as the limit value to which the series must converge) of a set of (orthogonal) eigenfunctions 

 ( ) that form the basis of a vector space:
 .

The limit of the series can be, e.g., from  to , or from  to . If the 
eigenfunctions are not orthonormal, one can find the normalization constant  as 

. The coefficients  can be found using the inner product (multiplying from 
the right by  with a different index ):

   (  is the Kronecker delta).

.

Classical orthogonal polynomials: there are some orthogonal polynomials  that satisfy the 
Sturm-Liouville equation and are called classical orthogonal polynomials. Remember: there are functions 
that satisfy the Sturm-Liouville equation and that are not polynomials.

Generalized Rodrigues's formula: . Where:  is a polynomial 
of degree  with only real roots;  strictly positive function ("weight function"), 
integrable within  and such that ;  is a first-degree polynomial in . 
The generalized Rodrigues's formula generates classical orthogonal polynomials in the interval . 
The constant  depends on the standard normalization of the polynomials (chosen so for historical 
reasons).

Comment: It can be proven that the Rodrigues's formula generates polynomials that satisfy 
the differential equation , i.e., they satisfy a Sturm-Liouville problem.
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Generating function: it is also possible to generate all orthogonal polynomials that satisfy a given 
Sturm-Liouville problem by repeated differentiations of a generating function  that can be 
expanded as  with some constants . Note that the nth derivative w.r.t. t brings 

out the polynomials and changes of variables to the index in the series create terms like  or . 
This means that derivatives of the generating function can create recurrence relations.

Schläfli representation: in order to extend the definition of orthogonal polynomials to the 
complex plane, we start by the complex Rodrigues's formula, , 

,  (  because  is a polynomial). Using Cauchy's integral formula 
 to integrate  times, we find 

, where C encloses the point ,  and the numerator inside 

the integral is analytic on and within C.
Example: contrary to the Rodrigues's formula, the Schläfli representation 
doesn't need  to make sense. Therefore, one can use the Schläfli 
representation for generalizing a polynomial to a function with non-integer 
values of n. As a concrete example, consider the Legendre polynomials. 

Substituting from the table, we find .  The 

contour is in the figure on the right. Generalizing for  and using the 
change of variable , it is possible to show that  can 
be written as an elliptical integral , which is another kind of special function. 
Integral representations are useful for finding relations (sometimes unexpected) between 
special functions.
Schläfli integral for non-polynomials and its relation to generating functions: the Bessel functions of 
the first kind are not polynomials, but they have a generating function 

 (see table). If we apply the residue theorem to an integral 

containing the generating function, we get  

with C encircling . With the change of variable , and C 

being the unit circle, we find  in general for  or 

 for . In this case, the generating function was used to 

get (a) Schläfli representation, but we can also derive generating functions (for example, for 
polynomials) using the/a Schläfli representation.
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Checked against: Weber & Arfken (2003) Essential Mathematical Methods for Physicists, Academic Press. Chapters 9-13.
The Chebyshev polynomials are taken from Korn & Korn (1968) Mathematical handbook... , table 21.7-1.
However: please be careful and always check.

Some (definitely not all!) orthogonal polynomials and eigenfunctions of the Sturm-Liouville problem

(nb 1) Warning, when computing the Rodrigues's formula: .
(nb 2) Here,  in the respective series expansion, unless otherwise specified. Warning: generating functions are not unique.
(nb 3) In most books, they take in Rodrigues's formula  and therefore they show no factor  in . However, they only 

do it in the Rodrigues's formula and not in the differential equation, so this is why we prefer to modify the  and introduce the 
minus sign there instead.

(nb 4) It is customary to make the change of variables  . After this change of variables,  and the interval is 
rescaled to  where the boundary condition is now . Then, the normalization changes to 

 where  are the zeros of the Bessel function.

(nb 5) See also nb 4. Because of recurrence formulae, one can express the normalization in other ways, for example, in terms of 
. The orthogonalization is achieved by considering Dirichlet boundary conditions, i.e., . The 

Bessel function is oscillatory, so one needs to choose a zero at the right distance  to satisfy the boundary condition.
(nb 6) Similarly to the case of the associated Legendre polynomials, the Associated Laguerre polynomials are defined in terms of a 

derivative of the Laguerre polynomials, namely,  .

(nb 7) There is an alternative way of defining the Hermite polynomials and its differential equation. Here we take the "Physicist Hermite 
polynomials".
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Generalized Bessel ODE 

The ODE  

with  has the solution  , where  is a combination of Bessel [ ] and 
Neumann [ ] functions (multiplied by constants).
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